Clustering
k-mean clustering

Genome 373
Genomic Informatics
Elhanan Borenstein
A quick review

- The clustering problem:
 - partition genes into distinct sets with high homogeneity and high separation
 - Clustering (unsupervised) vs. classification

- Clustering methods:
 - Agglomerative vs. divisive; hierarchical vs. non-hierarchical

- Hierarchical clustering algorithm:
 1. Assign each object to a separate cluster.
 2. Find the pair of clusters with the shortest distance, and regroup them into a single cluster.
 3. Repeat 2 until there is a single cluster.

- Many possible distance metrics

- Metric matters
K-mean clustering

Divisive

Non-hierarchical
K-mean clustering

- An algorithm for partitioning \(n \) observations/points into \(k \) clusters such that each observation belongs to the cluster with the nearest mean/center.

- Isn’t this a somewhat circular definition?
 - Assignment of a point to a cluster is based on the proximity of the point to the cluster mean.
 - But the cluster mean is calculated based on all the points assigned to the cluster.
K-mean clustering: Chicken and egg

- An algorithm for partitioning n observations/points into k clusters such that each observation belongs to the cluster with the nearest mean/center.

- The chicken and egg problem:

 I do not know the means before I determine the partitioning into clusters.

 I do not know the partitioning into clusters before I determine the means.

- Key principle - cluster around mobile centers:

 Start with some random locations of means/centers, partition into clusters according to these centers, and then correct the centers according to the clusters (somewhat similar to expectation-maximisation algorithm).
The number of centers, k, has to be specified a-priori.

Algorithm:

1. Arbitrarily select k initial centers
2. Assign each element to the closest center
3. Re-calculate centers (mean position of the assigned elements)
4. Repeat 2 and 3 until one of the following termination conditions is reached:
 - i. The clusters are the same as in the previous iteration
 - ii. The difference between two iterations is smaller than a specified threshold
 - iii. The maximum number of iterations has been reached
Partitioning the space

- Assigning elements to the closest center
Partitioning the space

- Assigning elements to the closest center
Partitioning the space

- Assigning elements to the closest center
Partitioning the space

- Assigning elements to the closest center
Partitioning the space

- Assigning elements to the closest center
Voronoi diagram

- Decomposition of a metric space determined by distances to a specified discrete set of “centers” in the space
- Each colored cell represents the collection of all points in this space that are closer to a specific center \(s \) than to any other center
- Several algorithms exist to find the Voronoi diagram.
K-mean clustering algorithm

- The number of centers, k, has to be specified a priori

- **Algorithm:**
 1. Arbitrarily select k initial centers
 2. Assign each element to the closest center (Voronoi)
 3. Re-calculate centers (mean position of the assigned elements)
 4. Repeat 2 and 3 until one of the following termination conditions is reached:
 1. The clusters are the same as in the previous iteration
 2. The difference between two iterations is smaller than a specified threshold
 3. The maximum number of iterations has been reached
K-mean clustering example

- Two sets of points randomly generated
 - 200 centered on (0,0)
 - 50 centered on (1,1)
K-mean clustering example

- Two points are randomly chosen as centers (stars)
K-mean clustering example

- Each dot can now be assigned to the cluster with the closest center
K-mean clustering example

- First partition into clusters

iter.max = 1 ; iterations = 1
K-mean clustering example

- Centers are re-calculated

iter.max = 1 ; iterations = 1
K-mean clustering example

- And are again used to partition the points
K-mean clustering example

- Second partition into clusters

iter.max = 2 ; iterations = 2
K-mean clustering example

- Re-calculating centers again

iter.max = 2 ; iterations = 2
K-mean clustering example

- And we can again partition the points
K-mean clustering example

- Third partition into clusters
K-mean clustering example

- After 6 iterations:

- The calculated centers remains stable
K-mean clustering: Summary

- The convergence of k-mean is usually quite fast (sometimes 1 iteration results in a stable solution)

- K-means is time- and memory-efficient

- **Strengths:**
 - Simple to use
 - Fast
 - Can be used with very large data sets

- **Weaknesses:**
 - The number of clusters has to be predetermined
 - The results may vary depending on the initial choice of centers
K-mean clustering: Variations

- Expectation-maximization (EM): maintains \textbf{probabilistic} assignments to clusters, instead of deterministic assignments, and multivariate Gaussian distributions instead of means.

- k-means++: attempts to choose better starting points.

- Some variations attempt to escape local optima by swapping points between clusters.
The take-home message

D’haeseleer, 2005
What else are we missing?
What else are we missing?

- What if the clusters are not “linearly separable”?
Cell cycle

Spellman et al. (1998)