
Strings

Genome 373

Genomic Informatics

Elhanan Borenstein

print “hello, world”

pi = 3.14159

pi = -7.2

yet_another_var = pi + 10

print pi

import math

log10 = math.log(10)

import sys

arg1 = sys.argv[1]

arg2 = sys.argv[2]

print arg1, ":", arg2

Writing and running
a program:

print “hello, world!”

>python hello.py

hello, world!

Programs vs. Interpreter

Running code in the
interpreter:

>>> print “hello, world!”

hello, world!

Strings
• A string type object is a sequence of characters.

• In Python, strings start and end with single or double
quotes (they are equivalent but they have to match).

>>> s = "foo"

>>> print s

foo

>>> s = 'Foo'

>>> print s

Foo

>>> s = "foo'

SyntaxError: EOL while scanning string literal

(EOL means end-of-line; to the Python interpreter there
was no closing double quote before the end of line)

Defining strings
• Each string is stored in computer memory as an array

of characters.

>>> myString = "GATTACA"

myString

computer memory (7 bytes)

How many bytes are needed to store the human genome? (3 billion nucleotides)

In effect, the variable myString consists of a pointer to the position in
computer memory (the address) of the 0th byte above. Every byte in
your computer memory has a unique integer address.

Accessing single characters
• You can access individual characters by using indices in square brackets.

>>> myString = "GATTACA"

>>> myString[0]

'G'

>>> myString[2]

'T'

>>> myString[-1]

'A'

>>> myString[-2]

'C'

>>> myString[7]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: string index out of range

Negative indices start at the
end of the string and move left.

FYI - when you request myString[n] Python adds n to the memory
address of the string and returns that byte from memory.

Accessing substrings ("slicing")

>>> myString = "GATTACA"

>>> myString[1:3]

'AT'

>>> myString[:3]

'GAT'

>>> myString[4:]

'ACA'

>>> myString[3:5]

'TA'

>>> myString[:]

'GATTACA'

notice that the length of the
returned string [x:y] is y - x

shorthand for
beginning or
end of string

Special characters
>>> print "He said "Wow!""

SyntaxError: invalid syntax

The backslash is used to introduce a
special character.

>>> print "He said \"Wow!\""

He said "Wow!"

>>> print "He said:\nWow!"

He said:

Wow!

Escape
sequence

Meaning

\’ Single quote

\” Double quote

\n Newline

\t Tab

\\ Backslash

More string functionality
>>> len("GATTACA")

7

>>> print "GAT" + "TACA"

GATTACA

>>> print "A" * 10

AAAAAAAAAA

>>> "GAT" in "GATTACA"

True

>>> "AGT" in "GATTACA"

False

>>> temp = "GATTACA"

>>> temp2 = temp[1:4]

>>> print temp2

ATT

>>> print temp

GATTACA

←Length

←Concatenation

←Repeat

←Substring tests

← Assign a string slice to a
variable name

(you can read this as “is GAT in GATTACA ?”)

String methods

• In Python, a method is a function that is
defined with respect to a particular object.

• The syntax is:
object.method(arguments)

or object.method() - no arguments

>>> dna = "ACGT"

>>> dna.find("T")

3 the first position where “T” appears

object (in this case
a string object)

string
method

method
argument

String methods
>>> s = "GATTACA"

>>> s.find("ATT")

1

>>> s.count("T")

2

>>> s.lower()

'gattaca'

>>> s.upper()

'GATTACA'

>>> s.replace("G", "U")

'UATTACA'

>>> s.replace("C", "U")

'GATTAUA'

>>> s.replace("AT", "**")

'G**TACA'

>>> s.startswith("G")

True

>>> s.startswith("g")

False

Function with two
arguments

Function with no
arguments

Strings are immutable
• Strings cannot be modified; instead, create a

new string from the old one using assignment.

>>> s = "GATTACA"

>>> s[0] = "R"

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: 'str' object doesn't support item
assignment

>>> w = "R" + s[1:]

>>> print w

RATTACA

>>> print s

GATTACA

>>> s = “R” + s[1:] # THIS WILL WORK!

>>> print s

RATTACA

• String methods do not modify the string;
they return a new string.

>>> seq = "ACGT"

>>> print seq.replace("A", "G")

GCGT

>>> print seq

ACGT

>>> new_seq = seq.replace("A", "G")

>>> print new_seq

GCGT

>>> print seq

ACGT

Strings are immutable

assign the result
from the right to a

variable name

String summary
Basic string operations:

S = "AATTGG" # literal assignment - or use single quotes ' '
s1 + s2 # concatenate
S * 3 # repeat string
S[i] # get character at position 'i'
S[x:y] # get a substring
len(S) # get length of string
int(S) # turn a string into an integer
float(S) # turn a string into a floating point number

Methods:

S.upper()
S.lower()
S.count(substring)
S.replace(old,new)
S.find(substring)
S.startswith(substring)
S.endswith(substring)

Printing:

print var1,var2,var3 # print multiple variables
print "text",var1,"text" # print a combination of text and vars

is a special character –
everything after it is a
comment, which the

program will ignore – USE
LIBERALLY!!

Class problem #1

• Write a program called dna2rna.py that reads a
DNA sequence from the first command line argument
and prints it as an RNA sequence. Make sure it
retains the case of the input.

> python dna2rna.py ACTCAGT

ACUCAGU

> python dna2rna.py actcagt

acucagu

> python dna2rna.py ACTCagt

ACUCagu

Two solutions

OR

import sys

seq = sys.argv[1]

new_seq = seq.replace("T", "U")

newer_seq = new_seq.replace("t", "u")

print newer_seq

import sys

print sys.argv[1] (to be continued)

Two solutions

OR

import sys

seq = sys.argv[1]

new_seq = seq.replace("T", "U")

newer_seq = new_seq.replace("t", "u")

print newer_seq

import sys

print sys.argv[1].replace("T","U") (to be continued)

Two solutions

OR

import sys

seq = sys.argv[1]

new_seq = seq.replace("T", "U")

newer_seq = new_seq.replace("t", "u")

print newer_seq

import sys

print sys.argv[1].replace("T","U").replace("t","u")

• It is legal (but not always desirable) to chain together
multiple methods on a single line.

• Think through what the second program does until
you understand why it works.

Tips:

Reduce coding errors - get in the habit
of always being aware what type of
object each of your variables refers to.

Use informative variable names.

Build your program bit by bit and check
that it functions at each step by running
it.

