A quick review

- Significance of similarity scores (P-values)
 - Empirical null score distribution
 - Extreme value distribution
- Multiple-testing correction (Bonferroni) and E-values

Global alignment algorithm:

Needleman-Wunsch.

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>A</th>
<th>A</th>
<th>T</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>-4</td>
<td>-8</td>
<td>-12</td>
<td>-16</td>
</tr>
<tr>
<td>A</td>
<td>-4</td>
<td>-5</td>
<td>-9</td>
<td>-13</td>
<td>-12</td>
</tr>
<tr>
<td>T</td>
<td>-8</td>
<td>-4</td>
<td>5</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>A</td>
<td>-12</td>
<td>-8</td>
<td>1</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>-16</td>
<td>-12</td>
<td>2</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>C</td>
<td>-20</td>
<td>-16</td>
<td>-2</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>

Local alignment algorithm:

Smith-Waterman.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Phylogenetic Trees

Genome 373
Genomic Informatics
Elhanan Borenstein
I think

Can you point to the sense for this?

There is no sure of relation C + B. The first gradation, B + D rather great distinction. Then genus would be formed. - being relation
Defining what a “tree” means

rooted tree (all real trees are rooted):

unrooted tree: (used when the root isn’t known):

… sequence divergence is proportional to (horizontal) branch lengths
A tree has topology and distances

Are these topologically different trees?
A tree has topology and distances

Are these topologically different trees?

Topologically, these are the SAME tree. In general, two trees are the same if they can be inter-converted by branch rotations.
Why is inferring phylogeny a hard problem?
The number of tree topologies grows extremely fast

In general, an unrooted tree with N leaves has:
- $2N - 3$ total branches
- N leaf branches
- $N - 3$ internal branches
- $N - 2$ internal nodes
- $3\times5\times7\times\ldots\times(2N-5) \sim O(N!)$ topologies
There are many rooted trees for each unrooted tree

For each unrooted tree, there are $2N - 3$ times as many rooted trees, where N is the number of leaves ($\# \text{ branches} = 2N - 3$).

20 leaves - $564,480,989,588,730,591,336,960,000,000$ topologies
How can you compute a tree?

- Many methods available, we will talk about:
 - Distance trees
 - Parsimony trees

- Others include:
 - Maximum-likelihood trees
 - Bayesian trees