
The clustering problem:  

 Different representations 

 

 homogeneity vs. separation 

 

 

 

 

 Many possible distance metrics 

 Many possible linkage approaches 

 Method matters; metric matters;  
definitions matter; 

 

 

A quick review 



 

A quick review 
 Hierarchical clustering:  

 Takes as input a distance matrix  

 Progressively regroups the closest objects/groups 

 The result is a tree - intermediate nodes represent clusters 

 Branch lengths represent distances between clusters 
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object 1 0.00 4.00 6.00 3.50 1.00

object 2 4.00 0.00 6.00 2.00 4.50

object 3 6.00 6.00 0.00 5.50 6.50

object 4 3.50 2.00 5.50 0.00 4.00

object 5 1.00 4.50 6.50 4.00 0.00

Distance matrix



Hierarchical clustering result 

Five clusters 



 “Unsupervised learning” problem 

 No single solution is necessarily the true/correct! 

 There is usually a tradeoff between homogeneity and 
separation: 

 More clusters  increased homogeneity but decreased separation 

 Less clusters  Increased separation but reduced homogeneity 

 Method matters; metric matters; definitions matter; 

 In most cases, heuristic methods or approximations are 
used.  

The “philosophy” of clustering - Summary 



Clustering 
k-mean clustering 
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K-mean clustering: A different approach 

 Clear definition of a ‘good’ clustering solution (in 
contrast to hierarchical clustering) 

 

 Divisive rather than agglomerative (in contrast to 
hierarchical clustering) 

 

 Obtained solution is non-hierarchical (in contrast to 
hierarchical clustering) 

 

 A new algorithmic approach (unlike any algorithm we 
learned so far)  



What constitutes a good clustering solution? 
 

(What exactly are we trying to find?) 



Defining a good clustering solution 
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The K-mean approach 
Clustering of n observations/points into k clusters  is ‘good’ 

if each observation is assigned to the cluster  
with the nearest mean/center 

Defining a good clustering solution 
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 An algorithm for partitioning n observations/points 
into k clusters such that each observation belongs to 
the cluster with the nearest mean/center 

 

 

 

 

K-mean clustering  

Cluster 2 center 
(mean) 

Cluster 1 center 
(mean) 



But how do we find a clustering solution 
with this property? 



 An algorithm for partitioning n  
observations/points into k clusters such  
that each observation belongs to the  
cluster with the nearest mean/center 
 

 Note the two components of this definition: 
 Partitioning of n points into clusters 

 Clusters’ means 

 A chicken and egg problem:  
I do not know the means before I determine the partitioning 
I do not know the partitioning before I determine the means  
 

 

K-mean clustering: Chicken and egg?  



The K-mean clustering algorithm 
An iterative approach 

 

 Key principle - cluster around mobile centers: 
Start with some random locations of means/centers,  
partition into clusters according to these centers,  
then correct the centers according to the clusters, and repeat 
 
[similar to EM (expectation-maximization)  algorithms] 

 



 The number of centers, k, has to be specified a-priori 
 

 Algorithm: 

1. Arbitrarily select k initial centers 

2. Assign each element to the closest center 

3. Re-calculate centers (mean position of the 
assigned elements) 

4. Repeat 2 and 3 until … 

K-mean clustering algorithm  
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K-mean clustering algorithm  

How can we do 
this efficiently? 



 Could be computationally intensive …. 

 

Assigning elements to the closest center 

B 
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 Could be computationally intensive …. 

 Preprocessing (by partitioning the space) can help  
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 Could be computationally intensive …. 

 Preprocessing (by partitioning the space) can help  

 



 Decomposition of a metric space  
determined by distances to a specified 
discrete set of “centers” in the space 
(each colored cell represents the collection of all points in this 
space that are closer to a specific center than to any other) 

 

 Several algorithms exist to find the Voronoi diagram 

 

 Numerous applications 
(e.g., the 1854 Broad Street cholera  
outbreak in Soho England, Aviation,  
and many others) 

 

Voronoi diagram  



 The number of centers, k, has to be specified a-priori 
 

 Algorithm: 

1. Arbitrarily select k initial centers 

2. Assign each element to the closest center (Voronoi) 

3. Re-calculate centers (mean position of the  
assigned elements) 

4. Repeat 2 and 3 until one of the following 
termination conditions is reached: 

i. The clusters are the same as in the previous iteration (stable solution) 

ii. The clusters are as in some previous iteration (cycle) 

iii. The difference between two iterations is small?? 

iv. The maximum number of iterations has been reached 

 

K-mean clustering algorithm  



K-mean clustering example  
 Two sets of points  

randomly generated 
 200 centered on (0,0) 

 50 centered on (1,1) 

 



K-mean clustering example  
 Two points are  

randomly chosen  
as centers (stars) 

 

 



K-mean clustering example  
 Each dot can now  

be assigned to the  
cluster with the  
closest center 

 



K-mean clustering example  
 First partition into 

clusters 



 Centers are  
re-calculated  
 

K-mean clustering example  



K-mean clustering example  
 And are again used 

to partition the  
points 



K-mean clustering example  
 Second partition into 

clusters 



K-mean clustering example  
 Re-calculating centers 

again 



K-mean clustering example  
 And we can again  

partition the points 



K-mean clustering example  
 Third partition  

into clusters 



K-mean clustering example  
 After 6 iterations: 

 

 The calculated  
centers remains  
stable 
 



K-mean clustering: Summary 
 The convergence of k-mean is usually quite fast 

(sometimes 1 iteration results in a stable solution) 
 

 K-means is time- and memory-efficient 
 

 Strengths: 

 Simple to use  

 Fast 

 Can be used with very large data sets 

 Weaknesses: 

 The number of clusters has to be predetermined  

 The results may vary depending on the initial choice of 
centers 

 



K-mean clustering: Variations 
 

 Expectation-maximization (EM):  
maintains probabilistic assignments to clusters, 
instead of deterministic assignments, and multivariate 
Gaussian distributions instead of means. 

 

 k-means++: attempts to choose better starting points. 

 

 Some variations attempt to escape local optima by 
swapping points between clusters 

 



An important take-home message 

D’haeseleer, 2005 

Hierarchical 
clustering 

K-mean 
clustering 

? 



What else are we missing? 



 What if the clusters are not “linearly separable”? 

What else are we missing? 
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