Biological Networks Analysis Dijkstra's algorithm and Degree Distribution Genome 373 Genomic Informatics Elhanan Borenstein #### A quick review #### Networks: - Networks vs. graphs - The Seven Bridges of Königsberg - A collection of nodes and links - Directed/undirected; weighted/non-weighted, ... - Transcriptional regulatory networks - Metabolic networks - Protein-protein interaction (PPI) networks #### The Bacon Number Game Tropic Thunder (2008) Tropic Thunder Iron Man Proof **Flatliners** **Hope Davis** Tropic Thunder Iron Man Frank Langella Tom Cruise Robert Downey Jr. #### The shortest path problem - Find the minimal number of "links" connecting node A to node B in an undirected network - How many friends between you and someone on FB (6 degrees of separation, Erdös number, Kevin Bacon number) - How far apart are two genes in an interaction network - What is the shortest (and likely) infection path - Find the shortest (cheapest) path between two nodes in a weighted directed graph - GPS; Google map Edsger Wybe Dijkstra 1930 –2002 "Computer Science is no more about computers than astronomy is about telescopes." #### Solves the single-source shortest path problem: - Find the shortest path from a single source to ALL nodes in the network - Works on both directed and undirected networks - Works on both weighted and non-weighted networks #### Approach: Maintain shortest path to each intermediate node #### Greedy algorithm ... but still guaranteed to provide optimal solution !! #### 1. Initialize: - i. Assign a distance value, D, to each node. Set D to zero for *start* node and to infinity for all others. - Mark all nodes as unvisited. - iii. Set *start* node as current node. #### 2. For each of the current node's unvisited neighbors: - i. Calculate tentative distance, D^t, through current node. - ii. If D^t smaller than D (previously recorded distance): $D \leftarrow D^t$ - iii. Mark current node as visited (note: shortest dist. found). - 3. Set the unvisited node with the smallest distance as the next "current node" and continue from step 2. - 4. Once all nodes are marked as visited, finish. A simple synthetic network #### 1. Initialize: - Assign a distance value, D, to each node. Set D to zero for start node and to infinity for all others. - ii. Mark all nodes as unvisited. - iii. Set start node as current node. - 2. For each of the current node's unvisited neighbors: - i. Calculate tentative distance, D^t, through current node. - ii. If D^t smaller than D (previously recorded distance): $D \leftarrow D^t$ - iii. Mark current node as visited (note: shortest dist. found). - 3. Set the unvisited node with the smallest distance as the next "current node" and continue from step 2. - 4. Once all nodes are marked as visited, finish. - Initialization - Mark A (start) as current node Check unvisited neighbors of A - Update D - Record path Mark A as visited ... | A | В | С | D | Е | F | |---|----|----|----|----|----| | 0 | 00 | 00 | 00 | 00 | 00 | | 0 | 9 | 3 | 00 | 00 | 00 | Mark C as current (unvisited node with smallest D) Check unvisited neighbors of C - Update distance - Record path | F | |-----------| | · · · · · | | 000 | | 00 | | | | | | | | | - Mark C as visited - Note: Distance to C is final!! - Mark E as current node - Check unvisited neighbors of E - Update D - Record path Mark E as visited | A | В | С | D | Ε | F | |---|----------|----------|----------|----------|----------| | 0 | ∞ | ∞ | ∞ | 00 | 00 | | 0 | 9 | 3 | ∞ | ∞ | 00 | | | 7 | 3 | 6 | 5 | ∞ | | | 7 | | 6 | 5 | 17 | | | | | | | | | | | | | | | - Mark D as current node - Check unvisited neighbors of D - Update D - Record path (note: path has changed) Mark D as visited | A | В | С | D | Ε | F | |---|----|----|----------|----------|----------| | 0 | 00 | 00 | 00 | 00 | 00 | | 0 | 9 | 3 | ∞ | ∞ | ∞ | | | 7 | 3 | 6 | 5 | ∞ | | | 7 | | 6 | 5 | 17 | | | 7 | | 6 | | 11 | | | | | | | | - Mark B as current node - Check neighbors | Α | В | С | D | E | F | |---|----|----|----|----|----------| | 0 | 00 | 00 | 00 | 00 | 00 | | 0 | 9 | 3 | 00 | 00 | 00 | | | 7 | 3 | 6 | 5 | ∞ | | | 7 | | 6 | 5 | 17 | | | 7 | | 6 | | 11 | | | | | | | | - No updates.. - Mark B as visited | Α | В | С | D | Ε | F | |---|----------|----------|----------|----------|----------| | 0 | ∞ | ∞ | ∞ | 00 | ∞ | | 0 | 9 | 3 | ∞ | ∞ | ∞ | | | 7 | 3 | 6 | 5 | ∞ | | | 7 | | 6 | 5 | 17 | | | 7 | | 6 | | 11 | | | 7 | | | | 11 | Mark F as current | A | В | C | D | Е | F | |---|----------|----------|----|----|----------| | 0 | ∞ | ∞ | 00 | 00 | 000 | | 0 | 9 | 3 | 00 | 00 | 00 | | | 7 | 3 | 6 | 5 | ∞ | | | 7 | | 6 | 5 | 17 | | | 7 | | 6 | | 11 | | | 7 | | | | 11 | Mark F as visited | Α | В | C | D | Е | F | |---|----|----|----|----|----------| | 0 | 00 | 00 | 00 | 00 | 00 | | 0 | 9 | 3 | 00 | 00 | 00 | | | 7 | 3 | 6 | 5 | ∞ | | | 7 | | 6 | 5 | 17 | | | 7 | | 6 | | 11 | | | 7 | | | | 11 | | | | | | | 11 | #### We are done! - We now have: - Shortest path from A to each node (both length and path) Minimum spanning tree | Α | В | C | D | Ε | F | |---|----|----|----------|----------|----------| | 0 | 00 | 00 | 00 | 00 | ∞ | | 0 | 9 | 3 | ∞ | ∞ | ∞ | | | 7 | 3 | 6 | 5 | ∞ | | | 7 | | 6 | 5 | 17 | | | 7 | | 6 | | 11 | | | 7 | | | | 11 | | | | | | | 11 | Will we always get a tree? Can you prove it? #### **Measuring Network Topology** # Networks in biology/medicine #### Comparing networks - We want to find a way to "compare" networks. - "Similar" (not identical) topology - "Common" design principles - We seek measures of network topology that are: - Simple - Capture global organization - Potentially "important" (equivalent to, for example, GC content for genomes) #### Node degree / rank Degree = Number of neighbors - Node degree in PPI networks correlates with: - Gene essentiality - Conservation rate - Likelihood to cause human disease brief communications Lethality and centrality in protein networks The most highly connected proteins in the cell are the most important for its survival. #### Degree distribution P(k): probability that a node has a degree of exactly k Potential distributions (and how they 'look'): #### Poisson: $$P(k) = \frac{e^{-d}d^k}{k!}$$ #### **Exponential:** $$P(k) \propto e^{-k/d}$$ #### **Power-law:** $$P(k) \propto k^{-c}, k \neq 0, c > 1$$ #### The Internet - **Nodes** 150,000 routers - Edges physical links - P(k) ~ k^{-2.3} #### Movie actor collaboration network - **Nodes** 212,250 actors - Edges co-appearance in a movie • $P(k) \sim k^{-2.3}$ Barabasi and Albert, Science, 1999 #### Protein protein interaction networks - Nodes Proteins - Edges Interactions (yeast) - $P(k) \sim k^{-2.5}$ ### Metabolic networks - Nodes Metabolites - Edges Reactions - $P(k) \sim k^{-2.2\pm2}$ Metabolic networks across all kingdoms of life are scale-free ## The power-law distribution - Power-law distribution has a "heavy" tail! - Characterized by a small number of highly connected nodes, known as hubs - A.k.a. "scale-free" network #### Hubs are crucial: Affect error and attack tolerance of complex networks (Albert et al. Nature, 2000) # Why do so many real-life networks exhibit a power-law degree distribution? - Is it "selected for"? - Is it expected by chance? - Does it have anything to do with the way networks evolve? - Does it have functional implications? ### **Network Motifs** - Going beyond degree distribution ... - Generalization of sequence motifs - Basic building blocks - Evolutionary design principles? ### What are network motifs? Recurring patterns of interaction (sub-graphs) that are significantly overrepresented (w.r.t. a background model) 13 possible 3-nodes sub-graphs (199 possible 4-node sub-graphs) ## Finding motifs in the network - 1a. Scan all n-node sub-graphs in the *real* network - 1b. Record number of appearances of each sub-graph (consider isomorphic architectures) - 2. Generate a large set of random networks - 3a. Scan for all n-node sub-graphs in random networks - 3b. Record number of appearances of each sub-graph - 4. Compare each sub-graph's data and identify motifs ## Finding motifs in the network ### Network randomization - How should the set of random networks be generated? - Do we really want "completely random" networks? - What constitutes a good null model? ### Network randomization - How should the set of random networks be generated? - Do we really want "completely random" networks? - What constitutes a good null model? Preserve in- and out-degree ### Generation of randomized networks #### **Network randomization algorithm:** Start with the real network and repeatedly swap randomly chosen pairs of connections (X1→Y1, X2→Y2 is replaced by X1→Y2, X2→Y1) (Switching is prohibited if the either of the X1 \rightarrow Y2 or X2 \rightarrow Y1 already exist) Repeat until the network is "well randomized" # Motifs in transcriptional regulatory networks - E. Coli network - 424 operons (116 TFs) - 577 interactions ## What's so interesting about FFLs A coherent feed-forward loop can act as a circuit that rejects transient activation signals from the general transcription factor and responds only to persistent signals, while allowing for a rapid system shutdown. | Network | Nodes | Edges | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | |--------------------------------|-------|-------|----------------|-------------------------------------|--------------------------| | Gene regulation (transcription | | | | X
V | Feed-
forward
loop | | E1: | 424 | 510 | > | \mathbf{v} | | | E. coli | 424 | 519 | 40 | 7 ± 3 | 10 | | S. cerevisiae* | 685 | 1,052 | 70 | 11 ± 4 | 14 | | Network | Nodes | Edges | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | $N_{\rm real}$ | $N_{\rm rand} \pm {\rm SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | |--------------------------------|-------|-------|----------------|-------------------------------------|--------------------------|----------------|-----------------------------|---------|----------------|-------------------------------------|---------| | Gene regulation (transcription | | | <u> </u> | X
V
Y
V | Feed-
forward
loop | X | Y
W | Bi-fan | | | | | E. coli | 424 | 519 | 40 | 7 ± 3 | 10 | 203 | 47 ± 12 | 13 | | | | | S. cerevisiae* | 685 | 1,052 | 70 | 11 ± 4 | 14 | 1812 | 300 ± 40 | 41 | | | | | Network | Nodes | Edges | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | $N_{\rm real}$ | $N_{ m rand} \pm m SD$ | Z score | |---------------------------------|-------|-------|----------------|-------------------------------------|--------------------------|----------------|-------------------------------------|---------|----------------|---------------------------|-----------------| | Gene regulati
(transcription | | |
 | Y
V
Z | Feed-
forward
loop | X | Y
W | Bi-fan | | | | | E. coli | 424 | 519 | 40 | 7 ± 3 | 10 | 203 | 47 ± 12 | 13 | | | | | S. cerevisiae* | 685 | 1,052 | 70 | 11 ± 4 | 14 | 1812 | 300 ± 40 | 41 | | | | | Neurons | | | > | Υ
Υ
Υ
Ζ | Feed-
forward
loop | X | Y
W | Bi-fan | Y | $\mathbb{Z}^{\mathbb{Z}}$ | Bi-
parallel | | C. elegans† | 252 | 509 | 125 | 90 ± 10 | 3.7 | 127 | 55 ± 13 | 5.3 | 227 | 35 ± 10 | 20 | | Network | Nodes | Edges | $N_{\rm real}$ | $N_{\rm rand} \pm {\rm SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | |-----------------------------------|-------|-------|----------------|-----------------------------|--------------------------|----------------|-------------------------------------|---------|----------------|-------------------------------------|-----------------| | Gene regulation
(transcription | | | > | X
V
Y
V
Z | Feed-
forward
loop | X | Y
W | Bi-fan | | | | | E. coli | 424 | 519 | 40 | 7 ± 3 | 10 | 203 | 47 ± 12 | 13 | | | | | S. cerevisiae* | 685 | 1,052 | 70 | 11 ± 4 | 14 | 1812 | 300 ± 40 | 41 | | | -34 | | Neurons | | | > | X
V
Y
V
Z | Feed-
forward
loop | X | Y
W | Bi-fan | Y | $\mathbb{Z}^{\mathbb{Z}}$ | Bi-
parallel | | C. elegans† | 252 | 509 | 125 | 90 ± 10 | 3.7 | 127 | 55 ± 13 | 5.3 | 227 | 35 ± 10 | 20 | | | | 90 | | | | (84) | | 3 | | | | |--------------------------------|------|---------------------------------|----------------|-----------------------------|--------------------------|----------------|----------------------------|-----------------|----------------|-------------------------------------|-----------------| | Network | Node | s Edges | $N_{\rm real}$ | $N_{\rm rand} \pm {\rm SD}$ | Z score | $N_{\rm real}$ | $N_{\rm rand} \pm { m SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SI}$ | Z score | | Gene regulat
(transcription | | | - | Υ
Ψ
Ψ
Z | Feed-
forward
loop | X | Y
W | Bi-fan | | | | | E. coli | 42.1 | Why do | these | 7 ± 3 | 10 | 203 | 47 ± 12 | 13 | | | | | S. cerevisiae* | 685 | networks | s have | 11 ± 4 | 14 | 1812 | 300 ± 40 | 41 | | | | | Neurons < | - | similar m | notifs? | Y
V | Feed-
forward
loop | X | ¥
W | Bi-fan | Y | $\mathcal{L}_{\mathbf{Z}}$ | Bi-
parallel | | C. elegans† | 252 | 509 | 125 | \mathbf{Z} 90 ± 10 | 3.7 | 127 | 55 ± 13 | 5.3 | 227 | 35 ± 10 | 20 | | Food webs | net | y is this
work so
ferent? | | X
V
Y
V
Z | Three
chain | Y | $V_{\mathbf{Z}}$ | Bi-
parallel | | motif is
ler-repre | sented! | | Little Rock | 92 | 984 | 3219 | 3120 ± 50 | 2.1 | 7295 | 2220 ± 210 | 25 | | | | | Ythan | 83 | 391 | 1182 | 1020 ± 20 | 7.2 | 1357 | 230 ± 50 | 23 | | | | | St. Martin | 42 | 205 | 469 | 450 ± 10 | NS | 382 | 130 ± 20 | 12 | | | | | Chesapeake | 31 | 67 | 80 | 82 ± 4 | NS | 26 | 5 ± 2 | 8 | | | | | Coachella | 29 | 243 | 279 | 235 ± 12 | 3.6 | 181 | 80 ± 20 | 5 | | | | | Skipwith | 25 | 189 | 184 | 150 ± 7 | 5.5 | 397 | 80 ± 25 | 13 | | | | | B. Brook | 25 | 104 | 181 | 130 ± 7 | 7.4 | 267 | 30 ± 7 | 32 | | | | ## Information Flow vs. Energy Flow | Network | Nodes | Edges | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | $N_{\rm real}$ | $N_{ m rand} \pm m SD$ | Z score | |---|----------------------|-------------------------|--------------------------|---|------------------------------|----------------------------------|--|--------------------------|----------------|---------------------------|-----------------| | Gene regulat
(transcription | | | > | Y
V
Z | Feed-
forward
loop | X | Y
W | Bi-fan | | | | | E. coli
S. cerevisiae* | 424
685 | 519
1,052 | 40
70 | 7 ± 3
11 ± 4 | 10
14 | 203
1812 | 47 ± 12 300 ± 40 | 13
41 | | | | | Neurons | | | > | Y
V
Z | Feed-
forward
loop | X | Y
W | Bi-fan | Y _N | $\mathbb{Z}^{\mathbb{Z}}$ | Bi-
parallel | | C. elegans† | 252 | 509 | 125 | 90 ± 10 | 3.7 | 127 | 55 ± 13 | 5.3 | 227 | 35 ± 10 | 20 | | Food webs | | | | X | Three | 2 | X N | Bi- | | | | | | | | | Ψ
Υ
Ψ
Z | chain | Y | $V^{\mathbf{Z}}$ | parallel | | motif is
ler-repre | sented! | | Little Rock
Ythan | 92
83 | 984
391 | 3219
1182 | Y
\(\psi \) | 2.1 | Y
7295
1357 | V | 25 | | | sented! | | DESCRIPTION TO THE PROPERTY OF THE PARTY | | | 1035033311003205 | \mathbf{Y} \mathbf{V} \mathbf{Z} 3120 ± 50 | | 7295 | V 2220 ± 210 | | | | sented! | | Ythan
St. Martin
Chesapeake | 83
42
31 | 391 | 1182
469
80 | Y V Z 3120 ± 50 1020 ± 20 450 ± 10 82 ± 4 | 2.1
7.2
NS
NS | 7295
1357
382
26 | V 2220 ± 210 230 ± 50 | 25
23
12
8 | | | sented! | | Ythan
St. Martin
Chesapeake
Coachella | 83
42
31
29 | 391
205
67
243 | 1182
469
80
279 | Y
V
Z
3120 ± 50
1020 ± 20
450 ± 10
82 ± 4
235 ± 12 | 2.1
7.2
NS
NS
NS | 7295
1357
382
26
181 | $ \begin{array}{c} $ | 25
23
12
8
5 | | | sented! | | Ythan
St. Martin
Chesapeake | 83
42
31 | 391
205
67 | 1182
469
80 | Y V Z 3120 ± 50 1020 ± 20 450 ± 10 82 ± 4 | 2.1
7.2
NS
NS | 7295
1357
382
26 | V
2220 ± 210
230 ± 50
130 ± 20
5 ± 2 | 25
23
12
8 | | | sented! | ## Network Motifs in Technological Networks | Electronic constraints (forward log | | | | - X | Feed-
forward
loop | X | √Y
W | Bi-fan | V X Y W | ν^{z} | Pi-
parallel | |---|--|---|---------------------------------|---|---|-----------------------------|---|-----------------------------|--|---|-----------------------------------| | s15850
s38584
s38417
s9234
s13207 | 10,383
20,717
23,843
5,844
8,651 | 14,240
34,204
33,661
8,197
11,831 | 424
413
612
211
403 | 2 ± 2 10 ± 3 3 ± 2 2 ± 1 2 ± 1 | 285
120
400
140
225 | 1739
2404
754
4445 | 1 ± 1
6 ± 2
1 ± 1
1 ± 1
1 ± 1 | 800
2550
1050
4950 | 480
711
531
209
264 | 2 ± 1
9 ± 2
2 ± 2
1 ± 1
2 ± 1 | 335
320
340
200
200 | | Electronic of (digital fraction) | | ipliers)
189 | Y ← 10 | $\frac{\mathbf{z}}{\mathbf{z}}$ | Three-
node
feedback
loop | X
Z | \mathbf{Y} \mathbf{W} 1 ± 1 | Bi-fan 3.8 | $z \leftarrow $ | $ \rightarrow \mathbf{Y} $ $ \downarrow \qquad $ | Four-
node
feedback
loop | | s420
s838‡ | 252
512 | 399
819 | 20
40 | $\begin{array}{c} 1\pm1\\ 1\pm1\\ 1\pm1\end{array}$ | 18
38 | 10
22 | 1 ± 1 1 ± 1 1 ± 1 | 10
20 | 11
23 | $\begin{array}{c} 1\pm 1 \\ 1\pm 1 \\ 1\pm 1 \end{array}$ | 11
25 | | World Wide | Web | | | X
V
Y
A
Z | Feedback
with two
mutual
dyads | Y < | D | Fully
connected
triad | $Y \stackrel{X}{\longleftrightarrow} Y $ | <u> </u> | Uplinked
mutual
dyad | 6.8e6 800 5e4±4e2 15,000 1.2e6 5000 325,729 1.46e6 1.1e5 nd.edu§ $2e3 \pm 1e2$ ## Motif-based network super-families