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A quick review

= Networks:
= Networks vs. graphs
= The Seven Bridges of Konigsberg
= A collection of nodes and links

= Directed/undirected; weighted/non-weighted, ...

= Many types of biological networks

= Transcriptional regulatory networks
= Metabolic networks

= Protein-protein interaction
(PPI) networks
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The shortest path problem

* Find the minimal number of “links” connecting node A
to node B in an undirected network

= How many friends between you and someone on FB
(6 degrees of separation, Erdos number, Kevin Bacon
number)

= How far apart are two genes in an interaction network
= What is the shortest (and likely) infection path

* Find the shortest (cheapest)
path between two nodes in
a weighted directed graph

= GPS; Google map




Dijkstra’s Algorithm

"Computer Science is no more about computers than
astronomy is about telescopes."

Edsger Wybe Dijkstra
1930 -2002



Dijkstra’s algorithm

= Solves the single-source shortest path problem:

* Find the shortest path from a single source to ALL nodes in
the network

= Works on both directed and undirected networks
= Works on both weighted and non-weighted networks

= Approach:

= Maintain shortest path
to each intermediate node

= Greedy algorithm

= ... butstill guaranteed to
provide optimal solution !!

Start




Dijkstra’s algorithm

1. Initialize:

I.  Assign a distance value, D, to each node.
Set D to zero for start node and to infinity for all others.

ii.  Mark all nodes as unvisited.
iii. Set start node as current node.

2. For each of the current node’s unvisited neighbors:
i.  Calculate tentative distance, D%, through current node.

ii. If Dt smaller than D (previously recorded distance): D& Dt
iii. Mark current node as visited (note: shortest dist. found).

3. Set the unvisited node with the smallest distance as
the next "current node" and continue from step 2.

4. Once all nodes are marked as visited, finish.




Dijkstra’s algorithm

= Asimple synthetic network

1. Initialize:
i. Assign a distance value, D, to each node.
Set D to zero for start node and to infinity for all others.
ii. Mark all nodes as unvisited.
iii. Set start node as current node.
2. For each of the current node’s unvisited neighbors:
i. Calculate tentative distance, D%, through current node.
ii. If Dt smaller than D (previously recorded distance): D& Dt
iii. Mark current node as visited (note: shortest dist. found).
3. Set the unvisited node with the smallest distance as
the next "current node" and continue from step 2.
4.0nce all nodes are marked as visited, finish.




Dijkstra’s algorithm

= |nitialization

= Mark A (start) as current node




Dijkstra’s algorithm

" Check unvisited neighbors of A




Dijkstra’s algorithm

= Update D
= Record path




Dijkstra’s algorithm

= Mark A as visited ...




Dijkstra’s algorithm

= Mark C as current (unvisited node with smallest D)




Dijkstra’s algorithm

" Check unvisited neighbors of C
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Dijkstra’s algorithm

= Update distance

= Record path




Dijkstra’s algorithm

= Mark C as visited
= Note: Distance to Cis finall!




Dijkstra’s algorithm

= Mark E as current node
" Check unvisited neighbors of E
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Dijkstra’s algorithm

= Update D
= Record path
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Dijkstra’s algorithm

= Mark E as visited




Dijkstra’s algorithm

= Mark D as current node

" Check unvisited neighbors of D




Dijkstra’s algorithm

= Update D
= Record path (note: path has changed)
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Dijkstra’s algorithm

= Mark D as visited
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Dijkstra’s algorithm

= Mark B as current node
= Check neighbors
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Dijkstra’s algorithm

= No updates..
= Mark B as visited
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Dijkstra’s algorithm

= Mark F as current
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Dijkstra’s algorithm

= Mark F as visited
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We are done!

= We now have:
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= Shortest path from A to each node (both length and path)
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= Minimum spanning tree
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11 Will we always get a tree?
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Measuring Network Topology



Networks in biology/medicine
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Comparing networks

= We want to find a way to “compare” networks.
= “Similar” (not identical) topology

= “Common” design principles

= We seek measures of network topology that are:

~
= Simple

. < |
= Capture global organization Summary
statistics

= Potentially “important”
~

(equivalent to, for example, GC content for genomes)



Node degree / rank

= Degree = Number of neighbors

= Node degree in PPl networks correlates with:

= Gene essentiality

= Conservation rate
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Degree distribution

= P(k): probability that a node
has a degree of exactly k

number of nodes

= Potential distributions (and how they ‘look’):

Poisson: Exponential: Power-law:
—d gk
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= P(k) ~ k23

The Internet

= Nodes — 150,000 routers
= Edges — physical links

Govindan and Tangmunarunkit, 2000



Movie actor collaboration network

Tropic Thunder (2008)
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= Nodes — 212,250 actors " e,
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Barabasi and Albert, Science, 1999



Protein protein interaction networks

= Nodes — Proteins
= Edges — Interactions (yeast)

= P(k) ~ k2
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Metabolic networks

= Nodes — Metabolites 10°%
1071

= Edges — Reactions

O P(k) ~ k-2.2i2 1o-4é |

Metabolic networks
across all kingdoms
of life are scale-free 10
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Jeong et al., Nature, 2000



The power-law distribution

Power-law distribution has a “heavy” tail

= Characterized by a small number of
highly connected nodes, known as hubs

A.k.a. “scale-free” network

Hubs are crucial:
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Affect error and attack tolerance of
complex networks (aibert et al. Nature, 2000)
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Why do so many real-life networks
exhibit a power-law degree distribution?

" /s it “selected for”?
" /s it expected by chance?

= Does it have anything to do with
the way networks evolve?

= Does it have functional implications?

?



Network Motifs

Going beyond degree distribution ...
Generalization of sequence motifs
Basic building blocks

Evolutionary design principles?



What are network motifs?

= Recurring patterns of interaction (sub-graphs) that are
significantly overrepresented (w.r.t. a background
model)

sz s
DR

13 possible 3-nodes sub-graphs
(199 possible 4-node sub-graphs)

R. Milo et al. Network motifs: simple building blocks of complex networks. Science, 2002



Finding motifs in the network

Scan all n-node sub-graphs in the real network

Record number of appearances of each sub-graph
(consider isomorphic architectures)

Generate a large set of random networks
Scan for all n-node sub-graphs in random networks
Record number of appearances of each sub-graph

Compare each sub-graph’s data and identify motifs




Finding motifs in the network

B

randomized networks

real network




Network randomization

* How should the set of random networks be generated?
* Do we really want “completely random” networks?

= What constitutes a good null model?



Network randomization

* How should the set of random networks be generated?

* Do we really want “completely random” networks?

= What constitutes a good null model?

4

Preserve in- and out-degree



Generation of randomized networks

Network randomization algorithm :

= Start with the real network and repeatedly swap randomly
chosen pairs of connections
(X12Y1, X2->Y2 is replaced by X12Y2, X2-2>Y1)

I X \&)
x) ¥2)

(Switching is prohibited if the either of the X1 Y2 or X2 2Y1 already exist)

= Repeat until the network is “well randomized”




Motifs in
transcriptional regulatory networks

= E. Coli network
= 424 operons (116 TFs)
= 577 interactions
= Significant enrichment of motif # 5 —(X Master TF

. l
.“-. E ‘ Y Specific TF

(40 instances vs. 713) Feed-Forward Loop
(FFL)

— Z Target

S. Shen-Orr et al. Nature Genetics 2002



What's so interesting about FFLs

Boolean Kinetics

input 1 H input X | [dY/dt=F(X,T,)-aY

_* i dz /dt=F(X,T,)F(Y,T,)-az
0

A simple cascade has

1r output Z - >
Z = \/ slower shutdown
| S d Mo |
. .

output

0 2 4 6 8 10 12 14 16 18 20
time

A coherent feed-forward loop can act as a circuit that rejects transient
activation signals from the general transcription factor and responds
only to persistent signals, while allowing for a rapid system shutdown.



Network motifs in biological networks

Network Nodes Edges Newil NpandESD Zseois
Gene regulation X Feed-
(transcription) \ forward

Y loop

\

Z

E. coli 424 519 40 T3 10
S. cerevisiae™ 685 1,052 70 11+4 14




Network motifs in biological networks

Network Nodes Edges Newil NpandESD  Zsecoie | Npeal Npand =9D Z score | Nieal Nrand=SD  Zscore
Gene regulation X Feed- X ¥ Bi-fan
(transcription) V forward M
Y loop
\% Z W
Z
E. coli 424 519 |40 743 10 203 47+12 13
S. cerevisiae®™ 685 1,052 | 70 11+4 14 1812 30040 41




Network motifs in biological networks

Network Nodes Edges Newil NpandESD Zscoie | Npeal Npand =9D Z score | Nieal NrandESD  Zscore
Gene regulation X Feed- X ¥ Bi-fan
(transcription) V forward M
Y loop
V Z W
Z
E. coli 424 519 40 T+3 10 203 47+12 13
S. cerevisiae™ 685 1,052 70 11 44 14 1812 30040 41
Neurons X Feed- X Y Bi-fan X Bi-
V forward VN parallel
\}/ SR Z W N
7 W
C. eleganst 252 509 125 90 + 10 3.7 127 55+13 53 227 35+10 20




Network motifs in biological networks

Network Nodes Edges Newil NpandESD Zscoie | Npeal Npand =9D Z score | Nieal NrandESD  Zscore
Gene regulation X Feed- X ¥ Bi-fan
(transcription) \ forward
Y loop
Z W
Z
E. coli 424 s
s corevisice* 685 | ™ Human cell-specific networks
Neurons Bi-
AV TIVAANNLVLV AV D parale
/.
3 41 cell-type specific transcriptional networks
C. eleganst 252 " _ : 6 + 10 20
= o —Imade using DNasel footprints
e
o A ;
o 9. - i Enriched
1 () .
i motifs
©
()
‘E
T Depleted
- S | RS motifs
o T
Z \/

-0.5

C. elegans neuronal

connectivity network

Deviation (SSE) = 0.0705
Neph et al. Cell 2012




Network motifs in biological networks

Network Nodes Edges Newil NpandESD Zscoie | Npeal Npand =9D Z score | Nieal NrandESD  Zscore
Gene regulation X Feed- X ¥ Bi-fan
(transcription) V forward M
Y loop
V Z W
Z
E. coli 424 519 40 T+3 10 203 47+12 13
S. cerevisiae™ 685 1,052 70 11 44 14 1812 30040 41
Neurons X Feed- X Y Bi-fan X Bi-
V forward VN parallel
\}/ SR Z W N
7 W
C. eleganst 252 509 125 90 + 10 3.7 127 55+13 53 227 35+10 20




Network motifs in biological networks

AN

N,

Network Nodes Edges Newil NpandESD Zseoie lreal.  Npand = 5D Z score real Nrand£SD  Zscore
Gene regulation X Feed- X ¥ Bi-fan
(transcription) V forward M
Y loop
V Z W
Z
E. coli Why do these  7+3 10 203 47+12 13
S. cerevisiae™ 68 networks have 11 +4 14 1812 30040 41
Neurons <_| similar motifs? J> Feed- X ¥ Bi-fan y X \ Bi-
forward parallel
\}/ P 2 W RN
7 W
C. eleganst 252 509 125 90 + 10 3.7 127 55+£13 53 227 35+£10 20
Food webs X Three X Bi-
Why is this \V chain M N parallel e .
network SO Y Y Z FFL mOtIf IS
different? V N ¥ under-represented!
Z W
Little Rock 92 984 3219 3120 £ 50 2.1 7295 2220+210 25
Ythan 83 391 1182 1020 + 20 ) 1357 230+ 50 23
St. Martin 42 205 469 450+ 10 NS 382 130 +£20 12
Chesapeake 31 67 80 82+4 NS 26 Nt D 8
Coachella 29 243 279 28512 3.6 181 80 =20 5
Skipwith 25 189 184 150 +7 35 397 80 + 25 13
B. Brook 25 104 181 130+ 7 74 267 30+ 7 32




Information Flow vs. Energy Flow

Network Nodes Edges Newil NpandESD Zscoie | Npeal Npand =9D Z score | Nieal NrandESD  Zscore
Gene regulation X Feed- X ¥ Bi-fan
(transcription) \% forward M
¥ loop
V Z W
Z
E. coli 424 519 §40 743 10 203 47+12 13
S. cerevisiae®™ 685 1,052 70 11+4 14 1812 30040 41
Neurons X Feed- X b 4 Bi-fan X Bi-
V forward VN parallel
\}/ = Z W RN
7 W
C. eleganst 252 509 125 90+ 10 3.7 127 55£13 53 227 35+10 20
Food webs X Three X Bi-
\V chain ¥ N parallel n .
% v 7 FFL motif is
V N\ ¥ under-represented!
Z W
Little Rock 92 984 3219 312050 2.1 7295 2220+210 25
Ythan 83 391 1182 1020 + 20 7.2 1357 230 £50 23
St. Martin 42 205 469 450+ 10 NS 382 130 +20 12
Chesapeake 31 67 80 82+4 NS 26 k2 8
Coachella 29 243 279 235212 3.6 181 80 =20 5
Skipwith 25 189 184 150 +7 35 397 80 £ 25 13
B. Brook 25 104 181 130 + 7 7.4 267 30.+7 32




Network Motifs in Technological Networks

Electronic circuits
(forward logic chips)

Feed-
forward
loop

s15850 10,383 14.240 242 285 480 241 335
s38584 20,717 34,204 | 413 10+£3 120 1739 612 800 711 G2 320
s38417 23,843 33.661 | 612 32 400 2404 = | 2550 531 22 340
$9234 5,844 8,197 | 211 7 Zati | 140 754 121 1050 209 | ==l 200
| s13207 8,651 11.831 § 403 Pz | 225 4445 154 4950 264 2+1 200
Electronic circuits X Three- X Y Bi-fan X—>Y Four-
(digital fractional multipliers) ﬁ \ node node
feedback feedback
Y<— Z loop Z W Z<—W loop
s208 122 189 10 11 9 4 | 3.8 5 L] 5
s420 252 399 20 1.#1 18 10 12 10 i 1.+1 11
| s838% 512 819 40 1+1 38 22 141 20 23 11 25
World Wide Web X Fully X Uplinked
@7 connected ﬂ ‘\ mutual
5 triad vy<—> 7 dyad
Z
nd.edu§ 325,729 1.46e6 | 1.1e5 2e3+1e2 15,000 1.2e6 le4 + 2e2 5000




Motif-based network super-families
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R. Milo et al. Superfamilies of evolved and designed networks. Science, 2004






