Biological Networks Analysis

Dijkstra's algorithm and Degree Distribution

Genome 373
Genomic Informatics
Elhanan Borenstein

A quick review

Networks:

- Networks vs. graphs
- The Seven Bridges of Königsberg
- A collection of nodes and links
- Directed/undirected; weighted/non-weighted, ...

- Transcriptional regulatory networks
- Metabolic networks
- Protein-protein interaction (PPI) networks

The Bacon Number Game

Tropic Thunder (2008)

Tropic Thunder

Iron Man

Proof

Flatliners

Hope Davis

Tropic Thunder

Iron Man

Frank Langella

Tom Cruise

Robert Downey Jr.

The shortest path problem

- Find the minimal number of "links" connecting node A to node B in an undirected network
 - How many friends between you and someone on FB (6 degrees of separation, Erdös number, Kevin Bacon number)
 - How far apart are two genes in an interaction network
 - What is the shortest (and likely) infection path
- Find the shortest (cheapest) path between two nodes in a weighted directed graph
 - GPS; Google map

Edsger Wybe Dijkstra 1930 –2002

"Computer Science is no more about computers than astronomy is about telescopes."

Solves the single-source shortest path problem:

- Find the shortest path from a single source to ALL nodes in the network
- Works on both directed and undirected networks
- Works on both weighted and non-weighted networks

Approach:

 Maintain shortest path to each intermediate node

Greedy algorithm

... but still guaranteed to provide optimal solution !!

1. Initialize:

- i. Assign a distance value, D, to each node.
 Set D to zero for *start* node and to infinity for all others.
- Mark all nodes as unvisited.
- iii. Set *start* node as current node.

2. For each of the current node's unvisited neighbors:

- i. Calculate tentative distance, D^t, through current node.
- ii. If D^t smaller than D (previously recorded distance): $D \leftarrow D^t$
- iii. Mark current node as visited (note: shortest dist. found).
- 3. Set the unvisited node with the smallest distance as the next "current node" and continue from step 2.
- 4. Once all nodes are marked as visited, finish.

A simple synthetic network

1. Initialize:

- Assign a distance value, D, to each node.
 Set D to zero for start node and to infinity for all others.
- ii. Mark all nodes as unvisited.
- iii. Set start node as current node.
- 2. For each of the current node's unvisited neighbors:
 - i. Calculate tentative distance, D^t, through current node.
 - ii. If D^t smaller than D (previously recorded distance): $D \leftarrow D^t$
 - iii. Mark current node as visited (note: shortest dist. found).
- 3. Set the unvisited node with the smallest distance as the next "current node" and continue from step 2.
- 4. Once all nodes are marked as visited, finish.

- Initialization
- Mark A (start) as current node

Check unvisited neighbors of A

- Update D
- Record path

Mark A as visited ...

A	В	С	D	Е	F
0	00	00	00	00	00
0	9	3	00	00	00

Mark C as current (unvisited node with smallest D)

Check unvisited neighbors of C

- Update distance
- Record path

F
· · · · ·
000
00

- Mark C as visited
- Note: Distance to C is final!!

- Mark E as current node
- Check unvisited neighbors of E

- Update D
- Record path

Mark E as visited

A	В	С	D	Ε	F
0	∞	∞	∞	00	00
0	9	3	∞	∞	00
	7	3	6	5	∞
	7		6	5	17

- Mark D as current node
- Check unvisited neighbors of D

- Update D
- Record path (note: path has changed)

Mark D as visited

A	В	С	D	Ε	F
0	00	00	00	00	00
0	9	3	∞	∞	∞
	7	3	6	5	∞
	7		6	5	17
	7		6		11

- Mark B as current node
- Check neighbors

Α	В	С	D	E	F
0	00	00	00	00	00
0	9	3	00	00	00
	7	3	6	5	∞
	7		6	5	17
	7		6		11

- No updates..
- Mark B as visited

Α	В	С	D	Ε	F
0	∞	∞	∞	00	∞
0	9	3	∞	∞	∞
	7	3	6	5	∞
	7		6	5	17
	7		6		11
	7				11

Mark F as current

A	В	C	D	Е	F
0	∞	∞	00	00	000
0	9	3	00	00	00
	7	3	6	5	∞
	7		6	5	17
	7		6		11
	7				11

Mark F as visited

Α	В	C	D	Е	F
0	00	00	00	00	00
0	9	3	00	00	00
	7	3	6	5	∞
	7		6	5	17
	7		6		11
	7				11
					11

We are done!

- We now have:
 - Shortest path from A to each node (both length and path)

Minimum spanning tree

Α	В	C	D	Ε	F
0	00	00	00	00	∞
0	9	3	∞	∞	∞
	7	3	6	5	∞
	7		6	5	17
	7		6		11
	7				11
					11

Will we always get a tree?

Can you prove it?

Measuring Network Topology

Networks in biology/medicine

Comparing networks

- We want to find a way to "compare" networks.
 - "Similar" (not identical) topology
 - "Common" design principles

- We seek measures of network topology that are:
 - Simple
 - Capture global organization
 - Potentially "important"

(equivalent to, for example, GC content for genomes)

Node degree / rank

Degree = Number of neighbors

- Node degree in PPI networks correlates with:
 - Gene essentiality
 - Conservation rate
 - Likelihood to cause human disease

brief communications

Lethality and centrality in protein networks

The most highly connected proteins in the cell are the most important for its survival.

Degree distribution

 P(k): probability that a node has a degree of exactly k

Potential distributions (and how they 'look'):

Poisson:

$$P(k) = \frac{e^{-d}d^k}{k!}$$

Exponential:

$$P(k) \propto e^{-k/d}$$

Power-law:

$$P(k) \propto k^{-c}, k \neq 0, c > 1$$

The Internet

- **Nodes** 150,000 routers
- Edges physical links
- P(k) ~ k^{-2.3}

Movie actor collaboration network

- **Nodes** 212,250 actors
- Edges co-appearance in a movie

• $P(k) \sim k^{-2.3}$

Barabasi and Albert, Science, 1999

Protein protein interaction networks

- Nodes Proteins
- Edges Interactions (yeast)
- $P(k) \sim k^{-2.5}$

Metabolic networks

- Nodes Metabolites
- Edges Reactions
- $P(k) \sim k^{-2.2\pm2}$

Metabolic networks across all kingdoms of life are scale-free

The power-law distribution

- Power-law distribution has a "heavy" tail!
 - Characterized by a small number of highly connected nodes, known as hubs
 - A.k.a. "scale-free" network

Hubs are crucial:

 Affect error and attack tolerance of complex networks (Albert et al. Nature, 2000)

Why do so many real-life networks exhibit a power-law degree distribution?

- Is it "selected for"?
- Is it expected by chance?
- Does it have anything to do with the way networks evolve?
- Does it have functional implications?

Network Motifs

- Going beyond degree distribution ...
- Generalization of sequence motifs
- Basic building blocks
- Evolutionary design principles?

What are network motifs?

 Recurring patterns of interaction (sub-graphs) that are significantly overrepresented (w.r.t. a background model)

13 possible 3-nodes sub-graphs (199 possible 4-node sub-graphs)

Finding motifs in the network

- 1a. Scan all n-node sub-graphs in the *real* network
- 1b. Record number of appearances of each sub-graph (consider isomorphic architectures)
- 2. Generate a large set of random networks
- 3a. Scan for all n-node sub-graphs in random networks
- 3b. Record number of appearances of each sub-graph
- 4. Compare each sub-graph's data and identify motifs

Finding motifs in the network

Network randomization

- How should the set of random networks be generated?
- Do we really want "completely random" networks?
- What constitutes a good null model?

Network randomization

- How should the set of random networks be generated?
- Do we really want "completely random" networks?
- What constitutes a good null model?

Preserve in- and out-degree

Generation of randomized networks

Network randomization algorithm:

Start with the real network and repeatedly swap randomly chosen pairs of connections (X1→Y1, X2→Y2 is replaced by X1→Y2, X2→Y1)

(Switching is prohibited if the either of the X1 \rightarrow Y2 or X2 \rightarrow Y1 already exist)

Repeat until the network is "well randomized"

Motifs in transcriptional regulatory networks

- E. Coli network
 - 424 operons (116 TFs)
 - 577 interactions

What's so interesting about FFLs

A coherent feed-forward loop can act as a circuit that rejects transient activation signals from the general transcription factor and responds only to persistent signals, while allowing for a rapid system shutdown.

Network	Nodes	Edges	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score
Gene regulation (transcription				X V	Feed- forward loop
E1:	424	510	>	\mathbf{v}	
E. coli	424	519	40	7 ± 3	10
S. cerevisiae*	685	1,052	70	11 ± 4	14

Network	Nodes	Edges	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{\rm rand} \pm {\rm SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score
Gene regulation (transcription			<u> </u>	X V Y V	Feed- forward loop	X	Y W	Bi-fan			
E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13			
S. cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41			

Network	Nodes	Edges	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{ m rand} \pm m SD$	Z score
Gene regulati (transcription			 	Y V Z	Feed- forward loop	X	Y W	Bi-fan			
E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13			
S. cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41			
Neurons			>	Υ Υ Υ Ζ	Feed- forward loop	X	Y W	Bi-fan	Y	$\mathbb{Z}^{\mathbb{Z}}$	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20

Network	Nodes	Edges	$N_{\rm real}$	$N_{\rm rand} \pm {\rm SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score
Gene regulation (transcription			>	X V Y V Z	Feed- forward loop	X	Y W	Bi-fan			
E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13			
S. cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41			-34
Neurons			>	X V Y V Z	Feed- forward loop	X	Y W	Bi-fan	Y	$\mathbb{Z}^{\mathbb{Z}}$	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20

		90				(84)		3			
Network	Node	s Edges	$N_{\rm real}$	$N_{\rm rand} \pm {\rm SD}$	Z score	$N_{\rm real}$	$N_{\rm rand} \pm { m SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SI}$	Z score
Gene regulat (transcription			-	Υ Ψ Ψ Z	Feed- forward loop	X	Y W	Bi-fan			
E. coli	42.1	Why do	these	7 ± 3	10	203	47 ± 12	13			
S. cerevisiae*	685	networks	s have	11 ± 4	14	1812	300 ± 40	41			
Neurons <	-	similar m	notifs?	Y V	Feed- forward loop	X	¥ W	Bi-fan	Y	$\mathcal{L}_{\mathbf{Z}}$	Bi- parallel
C. elegans†	252	509	125	\mathbf{Z} 90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs	net	y is this work so ferent?		X V Y V Z	Three chain	Y	$V_{\mathbf{Z}}$	Bi- parallel		motif is ler-repre	sented!
Little Rock	92	984	3219	3120 ± 50	2.1	7295	2220 ± 210	25			
Ythan	83	391	1182	1020 ± 20	7.2	1357	230 ± 50	23			
St. Martin	42	205	469	450 ± 10	NS	382	130 ± 20	12			
Chesapeake	31	67	80	82 ± 4	NS	26	5 ± 2	8			
Coachella	29	243	279	235 ± 12	3.6	181	80 ± 20	5			
Skipwith	25	189	184	150 ± 7	5.5	397	80 ± 25	13			
B. Brook	25	104	181	130 ± 7	7.4	267	30 ± 7	32			

Information Flow vs. Energy Flow

Network	Nodes	Edges	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{ m rand} \pm m SD$	Z score
Gene regulat (transcription			>	Y V Z	Feed- forward loop	X	Y W	Bi-fan			
E. coli S. cerevisiae*	424 685	519 1,052	40 70	7 ± 3 11 ± 4	10 14	203 1812	47 ± 12 300 ± 40	13 41			
Neurons			>	Y V Z	Feed- forward loop	X	Y W	Bi-fan	Y _N	$\mathbb{Z}^{\mathbb{Z}}$	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				X	Three	2	X N	Bi-			
				Ψ Υ Ψ Z	chain	Y	$V^{\mathbf{Z}}$	parallel		motif is ler-repre	sented!
Little Rock Ythan	92 83	984 391	3219 1182	Y \(\psi \)	2.1	Y 7295 1357	V	25			sented!
DESCRIPTION TO THE PROPERTY OF THE PARTY OF			1035033311003205	\mathbf{Y} \mathbf{V} \mathbf{Z} 3120 ± 50		7295	V 2220 ± 210				sented!
Ythan St. Martin Chesapeake	83 42 31	391	1182 469 80	Y V Z 3120 ± 50 1020 ± 20 450 ± 10 82 ± 4	2.1 7.2 NS NS	7295 1357 382 26	V 2220 ± 210 230 ± 50	25 23 12 8			sented!
Ythan St. Martin Chesapeake Coachella	83 42 31 29	391 205 67 243	1182 469 80 279	Y V Z 3120 ± 50 1020 ± 20 450 ± 10 82 ± 4 235 ± 12	2.1 7.2 NS NS NS	7295 1357 382 26 181	$ \begin{array}{c} $	25 23 12 8 5			sented!
Ythan St. Martin Chesapeake	83 42 31	391 205 67	1182 469 80	Y V Z 3120 ± 50 1020 ± 20 450 ± 10 82 ± 4	2.1 7.2 NS NS	7295 1357 382 26	V 2220 ± 210 230 ± 50 130 ± 20 5 ± 2	25 23 12 8			sented!

Network Motifs in Technological Networks

Electronic constraints (forward log				- X	Feed- forward loop	X	√Y W	Bi-fan	V X Y W	ν^{z}	Pi- parallel
s15850 s38584 s38417 s9234 s13207	10,383 20,717 23,843 5,844 8,651	14,240 34,204 33,661 8,197 11,831	424 413 612 211 403	2 ± 2 10 ± 3 3 ± 2 2 ± 1 2 ± 1	285 120 400 140 225	1739 2404 754 4445	1 ± 1 6 ± 2 1 ± 1 1 ± 1 1 ± 1	800 2550 1050 4950	480 711 531 209 264	2 ± 1 9 ± 2 2 ± 2 1 ± 1 2 ± 1	335 320 340 200 200
Electronic of (digital fraction)		ipliers) 189	Y ← 10	$\frac{\mathbf{z}}{\mathbf{z}}$	Three- node feedback loop	X Z	\mathbf{Y} \mathbf{W} 1 ± 1	Bi-fan 3.8	$z \leftarrow $	$ \rightarrow \mathbf{Y} $ $ \downarrow \qquad $	Four- node feedback loop
s420 s838‡	252 512	399 819	20 40	$\begin{array}{c} 1\pm1\\ 1\pm1\\ 1\pm1\end{array}$	18 38	10 22	1 ± 1 1 ± 1 1 ± 1	10 20	11 23	$\begin{array}{c} 1\pm 1 \\ 1\pm 1 \\ 1\pm 1 \end{array}$	11 25
World Wide	Web			X V Y A Z	Feedback with two mutual dyads	Y <	D	Fully connected triad	$Y \stackrel{X}{\longleftrightarrow} Y $	<u> </u>	Uplinked mutual dyad

6.8e6

800

5e4±4e2

15,000

1.2e6

5000

325,729 1.46e6 1.1e5

nd.edu§

 $2e3 \pm 1e2$

Motif-based network super-families

