Biological Networks Analysis **Network Motifs** Genome 373 Genomic Informatics Elhanan Borenstein ## A quick review #### Networks: - Networks vs. graphs - The Seven Bridges of Königsberg - A collection of **nodes** and **links** - Directed/undirected; weighted/non-weighted, ... - Transcriptional regulatory networks - Metabolic networks - Protein-protein interaction (PPI) networks ## Finding shortest path-Dijkstra's Algorithm ## Solves the single-source shortest path problem: - Find the shortest path from a single source to ALL nodes in the network - Works on both directed and undirected networks - Works on both weighted and non-weighted networks #### Approach: Maintain shortest path to each intermediate node #### Greedy algorithm ... but still guaranteed to provide optimal solution !! # **Measuring Network Topology** ## Degree distribution P(k): probability that a node has a degree of exactly k Potential distributions (and how they 'look'): #### **Poisson:** $$P(k) = \frac{e^{-d} d^k}{k!}$$ #### **Exponential:** $$P(k) \propto e^{-k/d}$$ #### **Power-law:** $$P(k) \propto k^{-c}, k \neq 0, c > 1$$ ## **Network Motifs** - Going beyond degree distribution ... - Generalization of sequence motifs - Basic building blocks - Evolutionary design principles? ## What are network motifs? Recurring patterns of interaction (sub-graphs) that are significantly overrepresented (w.r.t. a background model) 13 possible 3-nodes sub-graphs (199 possible 4-node sub-graphs) ## Finding motifs in the network - 1a. Scan all n-node sub-graphs in the *real* network - 1b. Record number of appearances of each sub-graph (consider isomorphic architectures) - 2. Generate a large set of random networks - 3a. Scan for all n-node sub-graphs in random networks - 3b. Record number of appearances of each sub-graph - 4. Compare each sub-graph's data and identify motifs # Finding motifs in the network ## Network randomization - How should the set of random networks be generated? - Do we really want "completely random" networks? - What constitutes a good null model? ## Network randomization - How should the set of random networks be generated? - Do we really want "completely random" networks? - What constitutes a good null model? **Preserve in- and out-degree** ## Generation of randomized networks ### **Network randomization algorithm:** Start with the real network and repeatedly swap randomly chosen pairs of connections (X1→Y1, X2→Y2 is replaced by X1→Y2, X2→Y1) (Switching is prohibited if the either of the X1 \rightarrow Y2 or X2 \rightarrow Y1 already exist) Repeat until the network is "well randomized" # Motifs in transcriptional regulatory networks - E. Coli network - 424 operons (116 TFs) - 577 interactions ## What's so interesting about FFLs A coherent feed-forward loop can act as a circuit that rejects transient activation signals from the general transcription factor and responds only to persistent signals, while allowing for a rapid system shutdown. | Network | Nodes | Edges | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | |--------------------------------|-------|-------|----------------|-------------------------------------|--------------------------| | Gene regulation (transcription | | | | X
V | Feed-
forward
loop | | E1: | 424 | 510 | > | \mathbf{v} | | | E. coli | 424 | 519 | 40 | 7 ± 3 | 10 | | S. cerevisiae* | 685 | 1,052 | 70 | 11 ± 4 | 14 | | Network | Nodes | Edges | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | $N_{\rm real}$ | $N_{\rm rand} \pm {\rm SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | |--------------------------------|-------|-------|----------------|-------------------------------------|--------------------------|----------------|-----------------------------|---------|----------------|-------------------------------------|---------| | Gene regulation (transcription | | | <u> </u> | X
V
Y
V | Feed-
forward
loop | X | Y
W | Bi-fan | | | | | E. coli | 424 | 519 | 40 | 7 ± 3 | 10 | 203 | 47 ± 12 | 13 | | | | | S. cerevisiae* | 685 | 1,052 | 70 | 11 ± 4 | 14 | 1812 | 300 ± 40 | 41 | | | | | Network | Nodes | Edges | $N_{\rm real}$ | $N_{\rm rand} \pm {\rm SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | |-----------------------------------|-------|-------|----------------|-----------------------------|--------------------------|----------------|-------------------------------------|---------|----------------|-------------------------------------|-----------------| | Gene regulation
(transcription | | | > | X
V
Y
V
Z | Feed-
forward
loop | X | Y
W | Bi-fan | | | | | E. coli | 424 | 519 | 40 | 7 ± 3 | 10 | 203 | 47 ± 12 | 13 | | | | | S. cerevisiae* | 685 | 1,052 | 70 | 11 ± 4 | 14 | 1812 | 300 ± 40 | 41 | | | -34 | | Neurons | | | > | X
V
Y
V
Z | Feed-
forward
loop | X | Y
W | Bi-fan | Y | $\mathbb{Z}^{\mathbb{Z}}$ | Bi-
parallel | | C. elegans† | 252 | 509 | 125 | 90 ± 10 | 3.7 | 127 | 55 ± 13 | 5.3 | 227 | 35 ± 10 | 20 | | Network | Nodes | Edges | $N_{\rm real}$ | $N_{\rm rand} \pm {\rm SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | |-----------------------------------|-------|-------|----------------|-----------------------------|--------------------------|----------------|-------------------------------------|---------|----------------|-------------------------------------|-----------------| | Gene regulation
(transcription | | | > | X
V
Y
V
Z | Feed-
forward
loop | X | Y
W | Bi-fan | | | | | E. coli | 424 | 519 | 40 | 7 ± 3 | 10 | 203 | 47 ± 12 | 13 | | | | | S. cerevisiae* | 685 | 1,052 | 70 | 11 ± 4 | 14 | 1812 | 300 ± 40 | 41 | | | -34 | | Neurons | | | > | X
V
Y
V
Z | Feed-
forward
loop | X | Y
W | Bi-fan | Y | $\mathbb{Z}^{\mathbb{Z}}$ | Bi-
parallel | | C. elegans† | 252 | 509 | 125 | 90 ± 10 | 3.7 | 127 | 55 ± 13 | 5.3 | 227 | 35 ± 10 | 20 | | Network | Nodes | Edges | $N_{ m real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | |---|--|--|--|--|---|--|---|--------------------------------------|----------------|-------------------------------------|-----------------| | Gene regulat
(transcriptio | | | → | Υ
Υ
Υ
Υ | Feed-
forward
loop | X | Y
W | Bi-fan | | | | | E. coli
S. cerevisiae* | 424
685 | Why do | | 7 ± 3
11 ± 4 | 10
14 | 203
1812 | 47 ± 12 300 ± 40 | 13
41 | | | | | Neurons - | _ | networks
similar m | | 7 | Feed-
forward
loop | X | Y
W | Bi-fan | Y _Y | $\mathcal{L}^{\mathbf{Z}}$ | Bi-
parallel | | C. elegans† | 252 | 509 | 125 | 90 ± 10 | 3.7 | 127 | 55 ± 13 | 5.3 | 227 | 35 ± 10 | 20 | | Food webs | netv | y is this
work so
erent? | | X
W
Y
W
Z | Three
chain | Y | $ u^{\mathbf{Z}} $ | Bi-
parallel | | motif is
ler-repre | sented! | | Little Rock Ythan St. Martin Chesapeake Coachella Skipwith B. Brook | 92
83
42
31
29
25
25 | 984
391
205
67
243
189
104 | 3219
1182
469
80
279
184
181 | 3120 ± 50 1020 ± 20 450 ± 10 82 ± 4 235 ± 12 150 ± 7 130 ± 7 | 2.1
7.2
NS
NS
3.6
5.5
7.4 | 7295
1357
382
26
181
397
267 | 2220 ± 210 230 ± 50 130 ± 20 5 ± 2 80 ± 20 80 ± 25 30 ± 7 | 25
23
12
8
5
13
32 | | | | # Information Flow vs. Energy Flow | Network | Nodes | Edges | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | $N_{\rm real}$ | $N_{\mathrm{rand}} \pm \mathrm{SD}$ | Z score | $N_{\rm real}$ | $N_{ m rand} \pm m SD$ | Z score | |---|----------------------|-------------------------|--------------------------|---|------------------------------|----------------------------------|--|--------------------------|----------------|---------------------------|-----------------| | Gene regulat
(transcription | | | > | Y
V
Z | Feed-
forward
loop | X | Y
W | Bi-fan | | | | | E. coli
S. cerevisiae* | 424
685 | 519
1,052 | 40
70 | 7 ± 3
11 ± 4 | 10
14 | 203
1812 | 47 ± 12 300 ± 40 | 13
41 | | | | | Neurons | | | > | Y
V
Z | Feed-
forward
loop | X | Y
W | Bi-fan | Y _N | $\mathbb{Z}^{\mathbb{Z}}$ | Bi-
parallel | | C. elegans† | 252 | 509 | 125 | 90 ± 10 | 3.7 | 127 | 55 ± 13 | 5.3 | 227 | 35 ± 10 | 20 | | Food webs | | | | X | Three | 2 | X N | Bi- | | | | | | | | | Ψ
Υ
Ψ
Z | chain | Y | $V^{\mathbf{Z}}$ | parallel | | motif is
ler-repre | sented! | | Little Rock
Ythan | 92
83 | 984
391 | 3219
1182 | Y
\(\psi \) | 2.1 | Y
7295
1357 | V | 25 | | | sented! | | DESCRIPTION TO THE PROPERTY OF THE PARTY | | | 1035033311003205 | \mathbf{Y} \mathbf{V} \mathbf{Z} 3120 ± 50 | | 7295 | V 2220 ± 210 | | | | sented! | | Ythan
St. Martin
Chesapeake | 83
42
31 | 391 | 1182
469
80 | Y V Z 3120 ± 50 1020 ± 20 450 ± 10 82 ± 4 | 2.1
7.2
NS
NS | 7295
1357
382
26 | V 2220 ± 210 230 ± 50 | 25
23
12
8 | | | sented! | | Ythan
St. Martin
Chesapeake
Coachella | 83
42
31
29 | 391
205
67
243 | 1182
469
80
279 | Y
V
Z
3120 ± 50
1020 ± 20
450 ± 10
82 ± 4
235 ± 12 | 2.1
7.2
NS
NS
NS | 7295
1357
382
26
181 | $ \begin{array}{c} $ | 25
23
12
8
5 | | | sented! | | Ythan
St. Martin
Chesapeake | 83
42
31 | 391
205
67 | 1182
469
80 | Y V Z 3120 ± 50 1020 ± 20 450 ± 10 82 ± 4 | 2.1
7.2
NS
NS | 7295
1357
382
26 | V
2220 ± 210
230 ± 50
130 ± 20
5 ± 2 | 25
23
12
8 | | | sented! | ## Network Motifs in Technological Networks | Electronic c
(forward log | | | | - X
Ψ
Υ
Ψ | Feed-
forward
loop | X | ¥
W | Bi-fan | Y
Y
V | ν^{z} | Pi-
parallel | |------------------------------|----------------|-----------------|--------------|--|---|-------------|---|-----------------------|-------------|----------------------------|----------------------------| | s15850 | 10,383 | 14,240 | 424 | 2 ± 2 | 285 | 1040 | 1 ± 1 | 1200 | 480 | 2 ± 1 | 335 | | s38584 | 20,717 | 34,204 | 413 | 10 ± 3 | 120 | 1739 | 6 ± 2 | 800 | 711 | 9 ± 2 | 320 | | s38417 | 23,843 | 33,661 | 612 | 3 ± 2 | 400 | 2404 | 1 ± 1 | 2550 | 531 | 2 ± 2 | 340 | | s9234
s13207 | 5,844
8,651 | 8,197
11,831 | 211
403 | 2 ± 1 2 ± 1 | 140
225 | 754
4445 | $\begin{array}{c} 1\pm 1 \\ 1\pm 1 \end{array}$ | 1050
4950 | 209
264 | 1 ± 1 2 ± 1 | 200
200 | | Electronic of | | 11,031 | \$ | X 2 ± 1 | Three- | | 1050 N - 51-508 | Bi-fan | X- | $\rightarrow_{\mathbf{Y}}$ | Four- | | (digital frac | | ipliers) | 1 Y ← | _ z | node
feedback
loop | X
Z | √
W | Di-lan | $z \leq$ | w
W | node
feedback
loop | | s208 | 122 | 189 | 10 | 1 ± 1 | 9 | 4 | 1 ± 1 | 3.8 | 5 | 1 ± 1 | 5 | | s420 | 252 | 399 | 20 | 1 ± 1 | 18 | 10 | 1 ± 1 | 10 | 11 | 1 ± 1 | 11 | | s838‡ | 512 | 819 | 40 | 1 ± 1 | 38 | 22 | 1 ± 1 | 20 | 23 | 1 ± 1 | 25 | | World Wide | e Web | | | X
\(\frac{1}{2} \) Y \(\frac{1}{2} \) | Feedback
with two
mutual
dyads | X
Y← | D | Fully connected triad | ✓ X
Y ← | <u> </u> | Uplinked
mutual
dyad | 6.8e6 800 5e4±4e2 15,000 1.2e6 5000 325,729 1.46e6 1.1e5 nd.edu§ $2e3 \pm 1e2$ ## Motif-based network super-families