
Scoring Alignments

Genome 373
Genomic Informatics
Elhanan Borenstein

A quick review

- The computational bottleneck
 - Scale of biological data

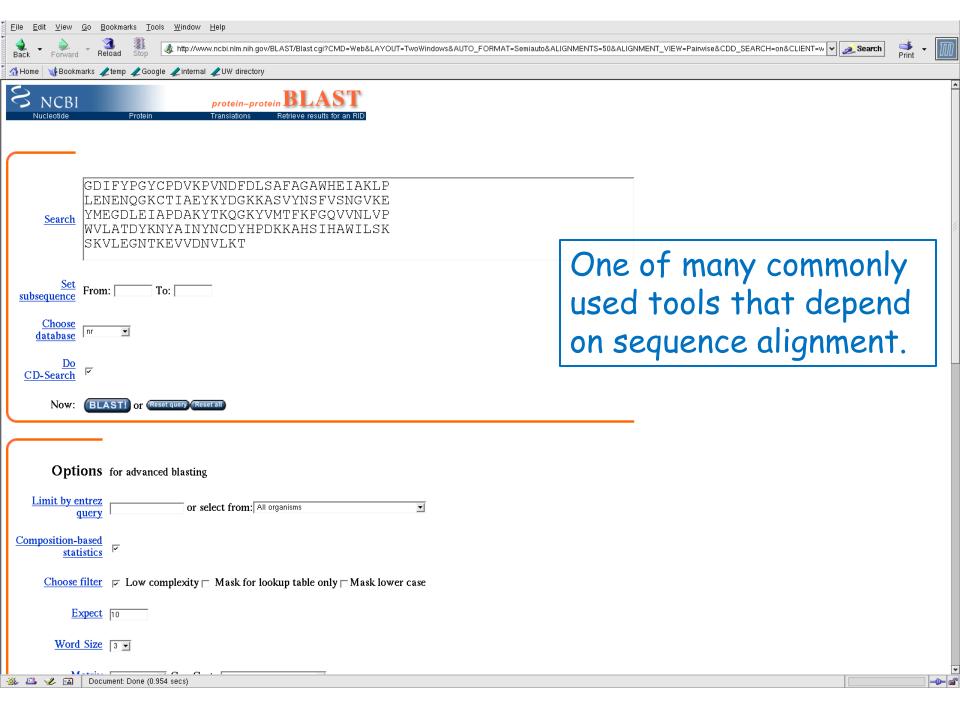
Complexity of tasks

A quick review: Informatic challenges

- Sequence comparison:
 - Find the best alignment of two sequences
 - Find the best match (alignment) of a given sequence in a large dataset of sequences
 - Find the best alignment of multiple sequences
- Motif and gene finding
- Relationship between sequences
 - Phylogeny
- Clustering and classification
- Many many many more ...

A quick review: Informatic challenges

- Sequence comparison:
 - Find the best alignment of two sequences
 - Find the best match (alignment) of a given sequence in a large dataset of sequences
 - Find the best alignment of multiple sequences
- Motif and gene finding
- Relationship between sequences
 - Phylogeny
- Clustering and classification
- Many many many more ...


Motivation

Why compare two DNA or protein sequences?

Motivation

Why compare two DNA or protein sequences?

- Determine whether they are descended from a common ancestor (homologous)
- Infer a common function
- Locate functional elements (motifs or domains)
- Infer protein or RNA structure, if the structure of one of the sequences is known
- Analyze sequence evolution
- Infer the species from which a sequence originated
- Quantify abundance/coverage

Sequence Comparison Challenges

Find the best global alignment of two sequences

Find the best global alignment of multiple sequences

Find the best *local (partial)* alignment of two sequences

 Find the best match (alignment) of a given sequence in a longer dataset of sequences

Sequence Comparison Challenges

✓ Find the best *global* alignment of two sequences

X Find the best *global* alignment of multiple sequences

✓ Find the best *local (partial)* alignment of two sequences

Find the best match (alignment) of a given sequence in a longer dataset of sequences

Find the best alignment of GAATC and CATAC:

GAATC CATAC GAAT-C C-ATAC -GAAT-C

C-A-TAC

GAAT-C C-ATAC

GAATC-CA-TAC GAAT-C CA-TAC GA-ATC CATA-C GAAT-C CA-TAC

(some of a very large number of possibilities)

Find the best alignment of GAATC and CATAC:

Conceptually:

- What does a "correct" alignment mean?
- Correct vs. Best

Find the best alignment of GAATC and CATAC:

Technically:

- This is a search (optimization) problem!!
- What do we need to solve this problem?

An algorithm for finding the alignment with the best score

A method for scoring alignments

Scoring Principles

GAATC CATAC

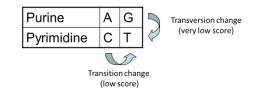
- Score each locus independently.
- The alignment score will be the sum of the scores in all loci.
- Perfect Matches will get a positive (good) score.
- What about mismatches?

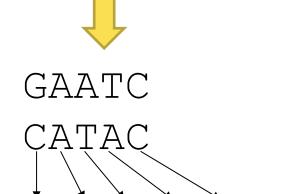
Scoring Principles

GAATC CATAC

- Score each locus independently.
- The alignment score will be the sum of the scores in all loci.
- Perfect Matches will get a positive (good) score.
- What about mismatches?

Purine	Α	G	Transversion change
Pyrimidine	С	Т	

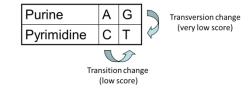

Transition change


(transitions are typically about 2x as frequent as transversions in real sequences)

Scoring Aligned Bases

A reasonable substitution matrix:

	Α	С	G	Т
Α	10	-5	0	-5
С	-5	10	-5	0
G	0	-5	10	-5
Т	-5	0	-5	10


-5 + 10 + -5 + -5 + 10 = 5

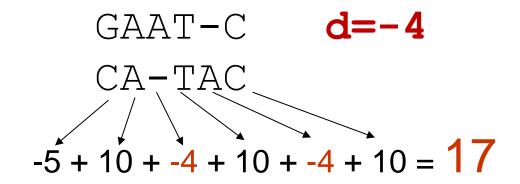
What about gaps?

What About Gaps?

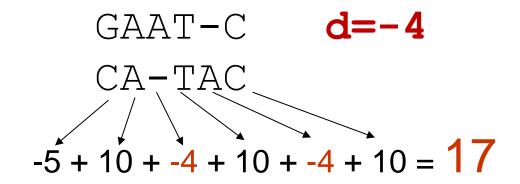
A reasonable substitution matrix:

	Α	С	G	T
Α	10	-5	0	-5
С	-5	10	-5	0
G	0	-5	10	-5
Т	-5	0	-5	10

What do gaps mean?


What if gaps have no penalty?

$$CA - TAC$$
 $-5 + 10 + ? + 10 + ? + 10 = ?$


Scoring Gaps?

Linear gap penalty: every gap receives a score of d:

Scoring Gaps?

Linear gap penalty: every gap receives a score of d:

 Affine gap penalty: opening a gap receives a score of d; extending a gap receives a score of e:

G--AATC
$$d=-4$$

CATA--C $e=-1$
 $-5+-4+-1+10+-4+-1+10=5$

Same Method Applies to AA

BLOSUM62 Score Matrix

	Α	R	N	D	С	Q	Е	G	Н	1	L	K	M	F	Р	S	Т	W	Y	٧	В	Z	X	*
Α	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-2	-1	1	0	-3	-2	0	-2	-1	0	-4
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3	-1	0	-1	-4
Ν	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3	3	0	-1	-4
D	-2	-2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3	4	1	-1	-4
С	0	-3	-3	-3	9	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1	-3	-3	-2	-4
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2	0	3	-1	-4
Ε	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2	1	4	-1	-4
G	0	-2	0	-1	-3	-2	-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3	-1	-2	-1	-4
Н	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3	0	0	-1	-4
1	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3	-3	-3	-1	-4
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1	-4	-3	-1	-4
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2	0	1	-1	-4
M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1	-3	-1	-1	-4
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1	-3	-3	-1	-4
Р	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2	-2	-1	-2	-4
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2	0	0	0	-4
Т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0	-1	-1	0	-4
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11	2	-3	-4	-3	-2	-4
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1	-3	-2	-1	-4
٧	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4	-3	-2	-1	-4
В	-2	-1	3	4	-3	0	1	-1	0	-3	-4	0	-3	-3	-2	0	-1	-4	-3	-3	4	1	-1	-4
Z	-1	0	0	1	-3	3	4	-2	0	-3	-3	1	-1	-3	-1	0	-1	-3	-2	-2	1	4	-1	-4
X	0	-1	-1	-1	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-2	0	0	-2	-1	-1	-1	-1	-1	-4
*	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	1
	($\overline{}$

Y mutates to V receives -1
M mutates to L receives 2
E gets deleted receives -10
G gets deleted receives -10
D matches D receives 6
Total score = -13

YMEGDLEIAPDAK VL--DKELSPDGT

Global Alignment Mission:

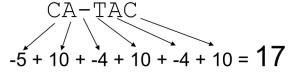
Find the best global alignment between two sequences.

An algorithm for finding the alignment with the best score

A method for scoring alignments

• Substitution matrix:

	Α	С	G	T
Α	10	-5	0	-5
С	-5	10	-5	0
G	0	-5	10	-5
Т	-5	0	-5	10


Gap penalty:

- Linear gap penalty
- Affine gap penalty

GAAT-C

A simple algorithm

Align the two sequences: GAATC and CATAC

GAATC CATAC

GAAT-C C-ATAC -GAAT-C C-A-TAC GAAT-C C-ATAC

GAATC-CA-TAC GAAT-C CA-TAC GA-ATC CATA-C GAAT-C CA-TAC

Simple (exhaustive search) algorithm

- 1) Construct all possible alignments
- 2) Use the substitution matrix and gap penalty to score each alignment
- 3) Pick the alignment with the best score

How many possibilities?

Align the two sequences: GAATC and CATAC

GAATC GAAT-C -GAAT-C GAAT-C CATAC C-ATAC C-A-TACC-ATAC GAATC-GA-ATC GAAT-C GAAT-C CA-TAC CA-TAC CATA-C CA-TAC

 How many different possible alignments of two sequences of length n exist?

How many possibilities?

Align the two sequences: GAATC and CATAC

GAATC GAAT-C -GAAT-C GAAT-C CATAC C-ATAC C-A-TACC-ATAC GAATC-GAAT-C GA-ATC GAAT-C CA-TAC CA-TAC CA-TAC CATA-C

 How many different possible alignments of two sequences of length n exist?

5	$2.5x10^{2}$
10	$1.8x10^{5}$
20	1.4×10^{11}
30	$1.2x10^{17}$
40	$1.1x10^{23}$

Mission:

Find the best alignment between two sequences.

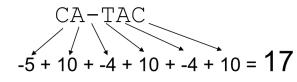
A algorithm for finding the alignment with the best score

A method for scoring alignments

- Needleman—Wunsch Algorithm
- Dynamic programming

Substitution matrix:

	Α	С	G	Т
A	10	-5	0	-5
C	-5	10	-5	0
G	0	-5	10	-5
Т	-5	0	-5	10


• Gap penalty:

- Linear gap penalty
- Affine gap penalty

GAAT-C

$$d=-4$$

