
A quick review
 Trees:

 Represent sequence relationships

 A sequence tree has a topology and
branch lengths (distances)

 The number of tree topologies grows very fast!

 Distance trees
 Aim to find the tree whose distances best match the

observed distances

 Build tree by sequential clustering algorithm (UPGMA).

UPGMA
(Unweighted Pair Group Method

with Arithmetic Mean)

1 2

3

4

5

1 2

3

4

5

1 2

3

4

5

1 2

3

4

5

1) generate a table of pairwise
sequence distances and assign each
sequence to a list of N tree nodes.

2) look through current list of nodes
(initially these are all leaf nodes) for
the pair with the smallest distance.

3) merge the closest pair, remove the
pair of nodes from the list and add
the merged node to the list.

4) repeat until only one node left in list
- it is the root.

 UPGMA assumes a constant rate of the
molecular clock across the entire tree!
 The sum of times down a path to

any leaf is the same

 This assumption may not be correct … and will lead to
incorrect tree reconstruction.

The Molecular Clock

0.1

0.4 0.4

0.1 0.1

1

3 4

2
1 2 3 4

1 0 0.3 0.5 0.6

2 0 0.6 0.5

3 0 0.9

4 0

 Essentially similar to UPGMA, but correction for
distance to other leaves is made.

 Specifically, for sets of leaves i and j, we denote the set
of all other leaves as L, and the size of that set as |L|,
and we compute the corrected distance Dij as:

Neighbor-Joining (NJ) Algorithm

0.1

0.4 0.4

0.1 0.1

1

3 4

2

But wait, there’s one more problem

Raw distance correction

DNA

• As two DNA sequences diverge, it is easy to see that their maximum raw
distance is ~0.75 (assuming equal nt frequencies, ¼ of residues will be
identical even if unrelated sequences).

• We would like to use the "true" distance, rather than raw distance.

• This graph shows evolutionary distance related to raw distance:

Jukes-Cantor model

3 4
ln(1)

4 3
rawD D  

Jukes-Cantor model:

Draw is the raw distance (what we directly measure)
D is the corrected distance (what we want)

 Convert each pairwise raw distance to a corrected distance
using Jukes-Cantor model.

 Build tree as before (UPGMA/NJ algorithm).

Distance trees – Summary notes

 Note 1: Notice that these methods only
consider pairwise distances. All other
information is discarded.

 Note 2: Notice that these methods don't need
to enumerate all tree topologies - they are
therefore very fast, even for large trees.

Parsimony I

Genome 373

Genomic Informatics

Elhanan Borenstein

Maximum Parsimony Algorithm

A fundamentally different method:

Instead of reconstructing a tree,
we will search for the best tree.

“Pluralitas non est ponenda sine necessitate”

William of Ockham
(c. 1288 – c. 1348)

(Maximum) Parsimony Principle

 “Pluralitas non est ponenda sine necessitate”
(plurality should not be posited without necessity)
 William of Ockham

 Occam’s Razor: Of two equivalent theories or
explanations, all other things being equal,
the simpler one is to be preferred.

 "when you hear hoof beats, think horses, not zebras“
 Medical diagnosis

 The KISS principle: "Keep It Simple, Stupid!"
 Kelly Johnson, Engineer

 “Make everything as simple as possible, but not simpler”
 Albert Einstein

Parsimony principle
for phylogenetic trees:

Find the tree that can explain the
current states with the fewest

evolutionary changes!

Lizard Island

Lizard Island
A

D

C

B

Lizard Island
A

D

C

B

A D C B

A D C B A D C B

A D C B

Tree 1

Tree 4 Tree 3

Tree 2

Consider 4 species

Consider 4 species

positions in alignment
(usually called "sites“) Sequence data:

 The same approach would work for any discrete property that
can be associated with the various species:
 Gene content (presence/absence of each gene)

 Morphological features (e.g., “has wings”, purple or white flowers)

 Numerical features (e.g., number of bristles)

Consider 4 species

positions in alignment
(usually called "sites“) Sequence data:

Parsimony Algorithm
1) Construct all possible trees
2) For each site in the alignment and for each tree

count the minimal number of changes required
3) Add all sites up to obtain the total number of

changes for each tree
4) Pick the tree with the lowest score

Consider 4 species

H closest
to C

Sequence data:

H closest
to G

or

H closest
to O

or

1) Construct all
possible trees

Consider 4 species

All possible
unrooted trees:

H closest
to C

Sequence data:

H closest
to G

or

H closest
to O

or

2) For each site and for each tree

count the minimal number of
changes required:

c c

a a c

c

Consider site 1

What is the minimal number of evolutionary changes
that can account for the observed pattern?

c c

a a c

c

Consider site 1

What is the minimal number of evolutionary changes
that can account for the observed pattern?

(Note: This is the “small parsimony” problem)

c c

a a c

c

Consider site 1

c c

a a c

c

Consider site 1

Uninformative
(no changes)

Consider site 2

Consider site 3

Put sites 1 and 3 together

Which tree
is the most

parsimonious?

Now put all of them together

9 8

7

parsimony
score

1) Construct all possible trees

2) For each site in the alignment and for each
tree count the minimal number of changes
required

3) Add all sites up to obtain the total number
of changes for each tree

4) Pick the tree with the lowest score

The parsimony algorithm

1) Construct all possible trees

2) For each site in the alignment and for each
tree count the minimal number of changes
required

3) Add all sites up to obtain the total number
of changes for each tree

4) Pick the tree with the lowest score

The parsimony algorithm
Too many!

1) Construct all possible trees

2) For each site in the alignment and for each
tree count the minimal number of changes
required

3) Add all sites up to obtain the total number
of changes for each tree

4) Pick the tree with the lowest score

The parsimony algorithm
Too many!

Search
algorithm

1) Construct all possible trees

2) For each site in the alignment and for each
tree count the minimal number of changes
required

3) Add all sites up to obtain the total number
of changes for each tree

4) Pick the tree with the lowest score

The parsimony algorithm
Too many!

Search
algorithm

1) Construct all possible trees

2) For each site in the alignment and for each
tree count the minimal number of changes
required

3) Add all sites up to obtain the total number
of changes for each tree

4) Pick the tree with the lowest score

The parsimony algorithm
Too many!

How?

Search
algorithm

1) Construct all possible trees

2) For each site in the alignment and for each
tree count the minimal number of changes
required

3) Add all sites up to obtain the total number
of changes for each tree

4) Pick the tree with the lowest score

The parsimony algorithm
Too many!

How? Fitch’s algorithm

Search
algorithm

 We divided the problem of finding the most
parsimonious tree into two sub-problems:

 Large parsimony: Find the topology which gives best score

 Small parsimony: Given a tree topology and the state in all
the tips, find the minimal number of changes required

 Divide and conquer. (Think functions !!)

 Large parsimony is “NP-hard”

 Small parsimony can be solved
quickly using Fitch’s algorithm

Large vs. Small Parsimony

Parsimony Algorithm
1) Construct all possible trees
2) For each site in the alignment and

for each tree count the minimal
number of changes required

3) Add all sites up to obtain the total
number of changes for each tree

4) Pick the tree with the lowest score

 Input:

1. A tree topology:

The Small Parsimony Problem

human chimp gorilla lemur gibbon bonobo

Human C A C T
Chimp T A C T
Bonobo A G C C
Gorilla A G C A
Gibbon G A C T
Lemur T A G T

 Output:
The minimal number of changes required: parsimony score

2. State assignments for
all tips:

human chimp gorilla lemur gibbon bonobo

C T G T A A

(but in fact, we will also find the most parsimonious
assignment for all internal nodes)

 Execute independently for each character:

 Two phases:

1. Bottom-up phase: Determine the set of possible
states for each internal node

2. Top-down phase: Pick a state for each internal node

Fitch’s algorithm

human chimp gorilla lemur gibbon bonobo

C T G T A A

2 1

1. Initialization: Ri = {si} for all tips

2. Traverse the tree from leaves to root (“post-order”)

3. Determine Ri of internal node i with children j, k:

1. Fitch’s algorithm: Bottom-up phase
(Determine the set of possible states for each internal node)


















kj

kjkj

i
RRotherwise

RRRRif
R



human chimp gorilla lemur gibbon bonobo

C T G T A A

1
C,T G,T

G,T,A

T

T,A
Let si denote the
state of node i and Ri
the set of possible
states of node i

1. Initialization: Ri = {si} for all tips

2. Traverse the tree from leaves to root (“post-order“)

3. Determine Ri of internal node i with children j, k:

1. Fitch’s algorithm: Bottom-up phase
(Determine the set of possible states for each internal node)

human chimp gorilla lemur gibbon bonobo

C T G T A A

1
C,T G,T

G,T,A

T


















kj

kjkj

i
RRotherwise

RRRRif
R



Parsimony-score =
union operations

Parsimony-score = 4

T,A

1. Pick arbitrary state in Rroot to be the state of the root ,sroot

2. Traverse the tree from root to leaves (“pre-order”)

3. Determine si of internal node i with parent j:

2. Fitch’s algorithm: Top-down phase
(Pick a state for each internal node)














i

jij

i
Rstatearbitraryotherwise

sRsif
s

human chimp gorilla lemur gibbon bonobo

C T G T A A

C,T G,T

G,T,A

T

Parsimony-score = 4

2

T,A

T T

T

T

A

1. Pick arbitrary state in Rroot to be the state of the root ,sroot

2. Traverse the tree from root to leaves (“pre-order”)

3. Determine si of internal node i with parent j:

2. Fitch’s algorithm: Top-down phase
(Pick a state for each internal node)

human chimp gorilla lemur gibbon bonobo

C T G T A A

Parsimony-score = 4

2














i

jij

i
Rstatearbitraryotherwise

sRsif
s

1) Construct all possible trees

2) For each site in the alignment and for each
tree count the minimal number of changes
required using Fitch’s algorithm

3) Add all sites up to obtain the total number
of changes for each tree

4) Pick the tree with the lowest score

The parsimony algorithm

