Parsimony |l

Search Algorithms

Genome 373
Genomic Informatics
Elhanan Borenstein

A quick review

= The parsimony principle: - §§§§§
" Find the tree that requires the Tl LGRLE
fewest evolutionary changes! HMG
= A fundamentally different method: c 0]
H C H
s?arch rather th.an reconstruct H H
= Parsimony algorithm . °° -

1. Construct all possible trees

2. For each site in the alignment and for each tree count the
minimal number of changes required

3. Add sites to obtain the total number of changes required
for each tree

4. Pick the tree with the lowest score

A quick review

= The parsimony principle: - gggzé
" Find the tree that requires the Tl LGRLE
fewest evolutionary changes! HMG
= A fundamentally different method: c 0]
H C H
sc?arch rather th.an reconstruct H H
= Parsimony algorithm . °° -

1. Construct all possible trees/| Too many!

2. For each site in the alignment and for each tree count the

minimal number of changes required/l U3 el
parsimony problem

3. Add sites to obtain the total number of changes required
for each tree

4. Pick the tree with the lowest score

Large vs. Small Parsimony

We divided the problem of finding the most
parsimonious tree into two sub-problems:

= Large parsimony: Find the topology which gives best score

= Small parsimony: Given a tree topology and the state in all
the tips, find the minimal number of changes required

Divide and conquer. (Think functions !!)

Large parsimony is “NP-hard”

Small parsimony can be solved
quickly using Fitch’s algorithm

Parsimony Algorithm

1) Construct all possible trees

2) For each site in the alignment and
for each tree count the minimal
number of changes required

3) Add all sites up to obtain the total
number of changes for each tree

4) Pick the tree with the lowest score

A quick review — Small Parsimony

= Input:
1. Atree topology: 2. State assignments for

all tips:
Human |[CIACT
chimp |TlacT
Bonobo|A|GC C
Gorilla |A|GC A
|__| Gibbon |GJAC T
human chimp gibbon lemur gorilla bonebo T

| Lemur AGT

= Qutput:

The minimal number of changes required: parsimony score

human chimp gibbon lemur gorilla bonobo

C T G T A A

= Fitch’s algorithm:
1. Bottom-up phase: Determine the set of possible states
2. Top-down phase: Pick a state for each internal node

1. Fitch’s algorithm: Bottom-up phase

(Determine the set of possible states for each internal node)

1. Initialization: R, = {s;} for all tips
2. Traverse the tree from leaves to root (“post-order”)
3. Determine R; of internal node i with children j, k:

~ It RRNR #d >R, "R,
- | otherwise — R, UR,

|

N

rA|

ul
lg,TA
CT G,T
huml:Ilmp gibbon lemur gorilla bonobo
C T G T A

A

Let s; denote the
state of node i and R;
the set of possible
states of node i

1. Fitch’s algorithm: Bottom-up phase

(Determine the set of possible states for each internal node)

1. Initialization: R; = {s;} for all tips
2. Traverse the tree from leaves to root (“post-order”)
3. Determine R; of internal node i with children j, k:

If RRNAR #d >R, "R,
- { otherwise — R; UR, }

A ' % Parsimony-score = %
T # union operations

@' Parsimony-score = 4

human chimp gibbon Ilemur gorilla bonobo

C T G T A A

. Fitch’s algorithm: Bottom-up phase

(Determine the set of possible states for each internal node)

rA|

T

CT

le,1.A

G,T

Parsimony-score =
union operations

Parsimony-score = 4

human chimp gibbon Ilemur gorilla bonobo

C T

G T A

A

2. Fitch’s algorithm: Top-down phase

(Pick a state for each internal node)

1. Pick arbitrary state in R

root

to be the state of the root,s

root

2. Traverse the tree from root to leaves (“pre-order”)

3. Determine s; of internal node j with parent j:

g

If s;eR —s;

otherwise — arbitrary state e R, }

N

TA|

1|

CT

[

human chimp gibbon Ilemur gorilla bonobo

C

T

G,T

G

le,1A

T

A

A

Parsimony-score = 4

2. Fitch’s algorithm: Top-down phase

(Pick a state for each internal node)
1. Pick arbitrary state in R__.to be the state of the root,s

root root

2. Traverse the tree from root to leaves (“pre-order”)
3. Determine s; of internal node j with parent j:

S, = _ _
otherwise — arbitrary state € R,

T Parsimony-score = 4

T
v hurg :i_lr;:p gibz::n Ien-';-ur golea bon;bo

And now
back to the “big” parsimony problem

How do we find the most parsimonious tree
amongst the many possible trees?

Searching tree space

= Exhaustive search:
Up to 8-10 leaves (10k-2m unrooted trees, 135k-34m rooted)
(Guaranteed results)

(How will be implement this??)

Sj£;>~\[//,r553
S4

S2

51 s3 S5 S5 51 s3
sssﬁj;y\r// Si;>ﬁ///53 si;;j/,,s3 /;>\F::
54 54 55
52 52
sa” sa”

o1 ¥ s3 $12 S5

S4 9 sa <
2
510 ° S2

SlYSB

S2

S4

S1 S3 51\%/53
\ﬁm

S2 S2

S1 S3
m eo o
sS4 S5

S2

S4

S5

S2

S3

Searching tree space

= Exhaustive search:
Up to 8-10 leaves (10k-2m unrooted trees, 135k-34m rooted)

(Guaranteed results) I

* Branch-and-bound*:
Up to 10-20 leaves
(Guaranteed results!!!)

* Branch-and-bound is a clever way of ruling out
most trees as they are built, you can evaluate more trees by exhaustive search.

= Heuristic search:
20+ leaves
May not find correct solution.

Search Space as a Landscape

4%

LT E
T e
‘;&;}zﬂﬂ =

S
B0 .
% 3 “&{%{& ““:‘1 ==
77 s

T _.':_" =
5 g:i-'-f:-‘f*** =

5)
0 v“ﬁ
-!- Ly

X \%

VT et {t Nin
P T HRY

How would you find the
highest point.in.a landscape

2 : “‘:‘ f:,?& 3

4‘ *%ﬂ!;f '4*\i 'o
“0 7 @
QI f” 4“‘

e
“-"-‘i_'r E*IIE .

é}fdr::::‘;; :
S e

‘0
é

2 St
™ J’; I;:.' :EI: v
“Hh #’-’f""": -.- :-'-
-4 . : * 'l \ ' _ L = .
:-i':'i':-; - T
—E'-. .
3-—'

Hill-climbing

» Gradient ascent
> A “greedy” algorithm
» A local search approach

Which properties of the landscape
affect our chances of finding the
optimal tree?

Which factors determines the
properties of the landscape?

Nearest-Neighbor Interchange (NNI)

GAM®B
VELO9B GAM2 GAVE3 GAMBB
A GAMO7 >

MELDO @& AW X &

g 7o & | " aracer

"’Qge ARAQG7

MELOBS A
MELO7B A0
MVELO7 A ARAO2
ARAACED
BWA16B,
BWAL2B
MERSS0A
T MERS3 B
QuAst MERSER
QUA3
QUADA BWAT2A
53 B
BN MERSS3A
QUAGZ3
BWA10
MERBIC
NERBI7A
BWAB MER317B
BWA4A T
NERST2B
BWA15 BWATBA

BWAGA

Nearest-Neighbor Interchange (NNI)

Nearest-Neighbor Interchange (NNI)

Sub-tree

Nearest-Neighbor Interchange (NNI)

i Y Five (of many)
N places where NNI
i can be considered
BWA12 \/ . 9
MERS30 B O O
v/ \/
wd % o Il "o
MER31 O

Searching with Nearest-Neighbor
Interchange (NNI)

1. Start with a random tree

. At each internal branch consider the two alternative

arrangements of the 4 sub-trees.
. Calculate the (parsimony) score of « }
each of these trees (including the original)
4. Keep the tree that has the best score 4 V

. Go to step 2. ‘)\

P

A QL
g v

The parsimony algorithm

1) Construct all possible trees or search the
space of possible trees using NNI hill-climb

2) For each site in the alignment and for each
tree count the minimal number of changes
required using Fitch’s algorithm

3) Add all sites up to obtain the total number
of changes for each tree

4) Pick the tree with the lowest score or search
until no better tree can be found

How can we improve this algorithm
and increase our chances of finding
the optimal tree?

Phylogenetic trees: Summary

Parsimony Trees:

1) Construct all possible trees or
search the space of possible trees

2) For each site in the alignment and
for each tree count the minimal
number of changes required using
Fitch’s algorithm

3)Add all sites up to obtain the total
number of changes for each tree

4) Pick the tree with the lowest score

Distance Trees:

1) Compute pairwise corrected
distances.

2)Build tree by sequential clustering
algorithm (UPGMA or Neighbor-
Joining).

3) These algorithms don't consider
all tree topologies, so they are
very fast, even for large trees.

Maximum-Likelihood Trees:

1) Tree evaluated for likelihood of data given tree.

2)Uses a specific model for evolutionary rates (such as Jukes-Cantor).
3) Like parsimony, must search tree space.

4) Usually most accurate method but slow.

Branch confidence

How certain are we that this is
the correct tree?

Can be reduced to many simpler
guestions - how certain are we
that each branch point is
correct?

For example, at the circled
branch point, how certain are we
that the three subtrees have the
correct content:

subtreel: QUA025, QUA013
Subtree2: QUA003, QUA024, QUA023
Subtree3: everything else

GAMR2 GAME3 GAM®BB

GAM74 (\Y

©
"0z & , % Arar

ARAD12

MERS®A

2 -

QUAD13 VERSR

QUARS BWAT2A

B
MERSD MERSG3A

BWA10
MER31C

MERB17A
BWAMB MER317B
BWAKA NERST2A
BWA15 BWA16A he B

BWAGA

Bootstrap support

Most commonly used
branch support test:

1. Randomly sample
alignment sites (with
replacement).

2. Use sample to estimate
the tree.

3. Repeat many times.

Original Sites
data i’_i 1 i_ i
| } I :
Sequences L L
|| | B
|| L
| |
L l._(.
_— Estimate of the tree
Bootstrap P, Si e ™
P ites N
sample #1 / // ____________ \
! { \
‘f | Sample same number |
Sequences of sites, with replacement —

|

|

.

|
| | |
\ |

Nk, T e e e / :
Bootst \\\\\ _________ s Bootstrap estimate
o] o N N Sites of the tree #1

sample #2 yvt¢
|
S Sample same number :
equences of sites, with replacement |
I
NSR——

(and so on) Bootstrap estimate

of the tree #2

(sample with replacement means that a sampled site remains in the source
data after each sampling, so that some sites will be sampled more than once)

Bootstrap support

For each branch point on the
computed tree, count what fraction

of the bootstrap trees have the wan o |
R

same subtree partitions (regardless .

of topology within the subtrees). o

For example at the circled branch point,

what fraction of the bootstrap trees have V.l
a branch point where the three subtrees T

include: e sorcs
Subtreel: QUA025, QUAO13 R

Subtree2: QUA0OO3, QUA024, QUA023 o | e

Subtree3: everything else

This fraction is the bootstrap support for
that branch.

MERSR2

Original tree figure with branch supports
(here as fractions, also common to give % support)

VELO9B GAM2 GAVES GAMBB
NELOSA GAM? Cy‘(&v
)
08
NEALg B4 00
1.00
MELO7 B ® 0
NELOT A (00} 1.00 .
N
095
BWA16
1.00
BWAT2
A
QUADS 1.00 . e 00 MERS9 B
/ =
o0
QUADT3 ® o s
rax 091
0%
QuUAR4 WA &
553
NER: MERSE3A
R BWA10
VER31
Y 1.00
NER317
1.00 -
WAT4
100 BYWAH NERST2A
— - VER572B

