
Parsimony II
Search Algorithms

Genome 373

Genomic Informatics

Elhanan Borenstein

 The parsimony principle:

 Find the tree that requires the
fewest evolutionary changes!

 A fundamentally different method:
search rather than reconstruct

 Parsimony algorithm

1. Construct all possible trees

2. For each site in the alignment and for each tree count the
minimal number of changes required

3. Add sites to obtain the total number of changes required
for each tree

4. Pick the tree with the lowest score

A quick review

 The parsimony principle:

 Find the tree that requires the
fewest evolutionary changes!

 A fundamentally different method:
search rather than reconstruct

 Parsimony algorithm

1. Construct all possible trees

2. For each site in the alignment and for each tree count the
minimal number of changes required

3. Add sites to obtain the total number of changes required
for each tree

4. Pick the tree with the lowest score

A quick review

Too many!

The small
parsimony problem

 We divided the problem of finding the most
parsimonious tree into two sub-problems:

 Large parsimony: Find the topology which gives best score

 Small parsimony: Given a tree topology and the state in all
the tips, find the minimal number of changes required

 Divide and conquer. (Think functions !!)

 Large parsimony is “NP-hard”

 Small parsimony can be solved
quickly using Fitch’s algorithm

Large vs. Small Parsimony

Parsimony Algorithm
1) Construct all possible trees
2) For each site in the alignment and

for each tree count the minimal
number of changes required

3) Add all sites up to obtain the total
number of changes for each tree

4) Pick the tree with the lowest score

 Fitch’s algorithm:

1. Bottom-up phase: Determine the set of possible states

2. Top-down phase: Pick a state for each internal node

A quick review – Small Parsimony

1. Initialization: Ri = {si} for all tips

2. Traverse the tree from leaves to root (“post-order”)

3. Determine Ri of internal node i with children j, k:

1. Fitch’s algorithm: Bottom-up phase
(Determine the set of possible states for each internal node)

kj

kjkj

i
RRotherwise

RRRRif
R

human chimp gorilla lemur gibbon bonobo

C T G T A A

1
C,T G,T

G,T,A

T

T,A
Let si denote the
state of node i and Ri
the set of possible
states of node i

1. Initialization: Ri = {si} for all tips

2. Traverse the tree from leaves to root (“post-order“)

3. Determine Ri of internal node i with children j, k:

1. Fitch’s algorithm: Bottom-up phase
(Determine the set of possible states for each internal node)

human chimp gorilla lemur gibbon bonobo

C T G T A A

1
C,T G,T

G,T,A

T

kj

kjkj

i
RRotherwise

RRRRif
R

Parsimony-score =
union operations

Parsimony-score = 4

T,A

1. Fitch’s algorithm: Bottom-up phase
(Determine the set of possible states for each internal node)

human chimp gorilla lemur gibbon bonobo

C T G T A A

C,T G,T

G,T,A

T

Parsimony-score =
union operations

Parsimony-score = 4

T,A

1. Pick arbitrary state in Rroot to be the state of the root ,sroot

2. Traverse the tree from root to leaves (“pre-order”)

3. Determine si of internal node i with parent j:

2. Fitch’s algorithm: Top-down phase
(Pick a state for each internal node)

i

jij

i
Rstatearbitraryotherwise

sRsif
s

human chimp gorilla lemur gibbon bonobo

C T G T A A

C,T G,T

G,T,A

T

Parsimony-score = 4

2

T,A

T T

T

T

A

1. Pick arbitrary state in Rroot to be the state of the root ,sroot

2. Traverse the tree from root to leaves (“pre-order”)

3. Determine si of internal node i with parent j:

2. Fitch’s algorithm: Top-down phase
(Pick a state for each internal node)

human chimp gorilla lemur gibbon bonobo

C T G T A A

Parsimony-score = 4

2

i

jij

i
Rstatearbitraryotherwise

sRsif
s

And now
back to the “big” parsimony problem

…

How do we find the most parsimonious tree
amongst the many possible trees?

 Exhaustive search:
Up to 8-10 leaves (10k-2m unrooted trees, 135k-34m rooted)

(Guaranteed results)

(How will be implement this??)

Searching tree space

S1

S2

S3

S1

S2

S3

S4

S1

S2

S3

S4

S1

S2

S3
S4

S1

S2

S3

S4

S5

S6 S7
S8

S9

S10

S11

S12
S1

S2

S3

S4

S5

S6 S7
S8

S9

S10

S11

S12

 Exhaustive search:
Up to 8-10 leaves (10k-2m unrooted trees, 135k-34m rooted)

(Guaranteed results)

 Branch-and-bound*:
Up to 10-20 leaves
 (Guaranteed results!!!)
* Branch-and-bound is a clever way of ruling out
 most trees as they are built, you can evaluate more trees by exhaustive search.

 Heuristic search:
 20+ leaves
 May not find correct solution.

Searching tree space

Search Space

Search Space as a Landscape

How would you find the
highest point in a landscape

in the dark

Hill-climbing

Rejected
related tree

Starting tree

Different
trees

Parsimony
score

Accepted
related tree

Final tree
still possible

that best
tree is here

 Gradient ascent
 A “greedy” algorithm
 A local search approach

Which properties of the landscape
affect our chances of finding the

optimal tree?

Which factors determines the
properties of the landscape?

Nearest-Neighbor Interchange (NNI)

Nearest-Neighbor Interchange (NNI)

Nearest-Neighbor Interchange (NNI)

Sub-tree

Nearest-Neighbor Interchange (NNI)

Five (of many)
places where NNI
can be considered

Searching with Nearest-Neighbor
Interchange (NNI)

1. Start with a random tree

2. At each internal branch consider the two alternative
arrangements of the 4 sub-trees.

3. Calculate the (parsimony) score of
each of these trees (including the original)

4. Keep the tree that has the best score

5. Go to step 2.

1) Construct all possible trees or search the
space of possible trees using NNI hill-climb

2) For each site in the alignment and for each
tree count the minimal number of changes
required using Fitch’s algorithm

3) Add all sites up to obtain the total number
of changes for each tree

4) Pick the tree with the lowest score or search
until no better tree can be found

The parsimony algorithm

How can we improve this algorithm
and increase our chances of finding

the optimal tree?

Parsimony Trees:
1)Construct all possible trees or

search the space of possible trees
2)For each site in the alignment and

for each tree count the minimal
number of changes required using
Fitch’s algorithm

3)Add all sites up to obtain the total
number of changes for each tree

4)Pick the tree with the lowest score

Phylogenetic trees: Summary

Distance Trees:
1)Compute pairwise corrected

distances.
2)Build tree by sequential clustering

algorithm (UPGMA or Neighbor-
Joining).

3)These algorithms don't consider
all tree topologies, so they are
very fast, even for large trees.

Maximum-Likelihood Trees:
1)Tree evaluated for likelihood of data given tree.
2)Uses a specific model for evolutionary rates (such as Jukes-Cantor).
3)Like parsimony, must search tree space.
4)Usually most accurate method but slow.

Branch confidence

How certain are we that this is
the correct tree?

Can be reduced to many simpler
questions - how certain are we
that each branch point is
correct?

For example, at the circled
branch point, how certain are we
that the three subtrees have the
correct content:

subtree1: QUA025, QUA013
Subtree2: QUA003, QUA024, QUA023
Subtree3: everything else

Most commonly used
branch support test:

1. Randomly sample

alignment sites (with
replacement).

2. Use sample to estimate
the tree.

3. Repeat many times.

(sample with replacement means that a sampled site remains in the source
data after each sampling, so that some sites will be sampled more than once)

Bootstrap support

For each branch point on the
computed tree, count what fraction
of the bootstrap trees have the
same subtree partitions (regardless
of topology within the subtrees).

For example at the circled branch point,
what fraction of the bootstrap trees have
a branch point where the three subtrees
include:
 Subtree1: QUA025, QUA013
 Subtree2: QUA003, QUA024, QUA023
 Subtree3: everything else

This fraction is the bootstrap support for
that branch.

Bootstrap support

Original tree figure with branch supports
(here as fractions, also common to give % support)

