A quick review

- The parsimony principle:
- Find the tree that requires the fewest evolutionary changes!
- A fundamentally different method:
- Search rather than reconstruct
- Parsimony algorithm

1. Construct all possible trees - Too many!
2. For each site in the alignment and for each tree count the minimal number of changes required $\begin{gathered}\text { The small } \\ \text { parsimony problem }\end{gathered}$
3. Add sites to obtain the total number of changes required for each tree
4. Pick the tree with the lowest score

A quick review - cont ${ }^{\prime}$

- Fitch's algorithm:

1. Bottom-up phase:

Determine the set of possible states
2. Top-down phase:

Pick a state for each internal node

- Searching the tree space:
- Exhaustive search
- branch and bound
- Hill climbing with

Nearest-Neighbor Interchange

The parsimony algorithm

1) Construct all possible trees or search the space of possible trees using NNI hill-climb
2) For each site in the alignment and for each tree count the minimal number of changes required using Fitch's algorithm
3) Add all sites up to obtain the total number of changes for each tree
4) Pick the tree with the lowest score or search until no better tree can be found

Search algorithm - Review

How can we improve the search algorithm and increase our chances of finding the optimal tree?

How can we apply this algorithm to solve other problems?

Phylogenetic trees: Summary

Parsimony Trees:

1) Construct all possible trees or search the space of possible trees
2) For each site in the alignment and for each tree count the minimal number of changes required using Fitch's algorithm
3) Add all sites up to obtain the total number of changes for each tree
4) Pick the tree with the lowest score

Distance Trees:

1) Compute pairwise corrected distances.
2) Build tree by sequential clustering algorithm (UPGMA or NeighborJoining).
3) These algorithms don't consider all tree topologies, so they are very fast, even for large trees.

Maximum-Likelihood Trees:

1) Tree evaluated for likelihood of data given tree.
2) Uses a specific model for evolutionary rates (such as Jukes-Cantor).
3) Like parsimony, must search tree space.
4) Usually most accurate method but slow.

Branch confidence

How certain are we that this is the correct tree?

Can be reduced to many simpler questions - how certain are we that each branch point is correct?

For example, at the circled branch point, how certain are we that the three subtrees have the correct content:

subtree1: QUA025, QUA013
Subtree2: QUA003, QUA024, QUA023
Subtree3: everything else

Bootstrap support

Most commonly used branch support test:

1. Randomly sample alignment sites (with replacement).
2. Use sample to estimate the tree.
3. Repeat many times.
(sample with replacement means that a sampled site remains in the source data after each sampling, so that some sites will be sampled more than once)

Bootstrap support

For each branch point on the computed tree, count what fraction of the bootstrap trees have the same subtree partitions (regardless of topology within the subtrees).

For example at the circled branch point, what fraction of the bootstrap trees have a branch point where the three subtrees include:
Subtree1: QUA025, QUA013
Subtree2: QUA003, QUA024, QUA023
Subtree3: everything else

This fraction is the bootstrap support for that branch.

Original tree figure with branch supports (here as fractions, also common to give \% support)

Clustering

Genome 373

Genomic Informatics
Elhanan Borenstein

A common data structure in high-throughput biology

A common data structure in high-throughput biology

A	776	2905	5317	3275	4580	1083	2169			1391	0	-	0	0	410	0
										314	846	651			480	942
	70	63	83	164	97	186	196	126	68	216	536	475	114	566	183	${ }_{376}$
	27	31	197	26	157	197	184	67	7	98	677	1504	345	393	148	93
	111	367	239	463	508	175	282	77	147	877	0				435	727
	240	335	136	167	104	78	142	158	657	130	420				592	158
	806	45	49	${ }^{6}$	27	31	67	55	18	65	86				152	386
즈N	0	100	154	176	${ }_{4}^{426}$	144	167	6	128	193	144				92	149
	24	156	813	679	374	565	573	0	262		45			20	137	${ }^{36}$
	86	${ }^{163}$	8	55	0	47	21	239	63				146	0	175	${ }^{326}$
			\bigcirc	5	29	119	5	30			116					20
		${ }_{154}^{635}$	36	10	${ }_{48}^{108}$	12	${ }_{9}^{55}$				1168	${ }_{143}^{176}$	${ }_{86}^{45}$	357	384 53	33
	516	3	114	109	186	54				118	d	14			378	163
	70 27	${ }_{31}^{63}$	${ }_{197}^{83}$	${ }_{26}^{164}$	${ }_{157}^{97}$				7	${ }_{98}^{216}$	${ }_{677}^{536}$	${ }_{1575}^{4754}$	114 345	566 393	183 148	${ }_{93}^{376}$
			239						7	${ }^{98}$	67	1504	345	393	1148	
		${ }_{3}^{367}$	${ }_{136}^{239}$					158	${ }_{657}^{147}$	130	420	123	${ }_{93}^{49}$		${ }_{592}^{435}$	158
	806	45					67	55	18	65	86	294	24	157	152	386
		100			26	144	167	6	128	193	144	171	1101	392	92	149
	24	156	813		374	565	573	0	262	772	456	514	1461	620	137	36
		163						239		74	706	196				326
	0	0	0	5	29	119	28	0	0	0	173	361	0	0	0	20
								30				176	45			

A common data structure in high-throughput biology

- Samples
- Conditions
- Stimuli
- Time points
- Tissues
- Disease states
- Locations
- Cell types
\square
- Genes
- Proteins
- Transcripts
- Species

Samples

A common data structure in high-throughput biology

The clustering problem

The clustering problem

- The goal of gene clustering process is to partition the genes into distinct sets such that genes that are assigned to the same cluster are "similar", while genes assigned to different clusters are "nonsimilar".

Different views of clustering ...

The clustering problem

- The goal of gene clustering process is to partition the genes into distinct sets such that genes that are assigned to the same cluster are "similar", while genes assigned to different clusters are "nonsimilar".

The clustering problem

- A good clustering solution should have two features:

1. High homogeneity: homogeneity measures the similarity between genes assigned to the same cluster.
2. High separation: separation measures the distance/dissimilarity between clusters.
(If two clusters have similar expression patterns, then they should probably be merged into one cluster).

Why clustering

Why clustering

- Clustering genes or conditions is a basic tool for the analysis of expression profiles, and can be useful for many purposes, including:
- Inferring functions of unknown genes (assuming a similar expression pattern implies a similar function).
- Identifying disease profiles (tissues with similar pathology should yield similar expression profiles).
- Deciphering regulatory mechanisms: co-expression of genes may imply co-regulation.
- Reducing dimensionality.

Why is clustering a hard computational problem?

One problem, numerous solutions

- Many algorithms:
- Hierarchical clustering
- k-means
- self-organizing maps (SOM)
- Knn
- PCC
- CLICK
- There are many formulations of the clustering problem; most of them are NP-hard (why?).
- The results (i.e., obtained clusters) can vary drastically depending on:
- Clustering method
- Parameters specific to each clustering method (e.g. number of centers for the k-mean method, agglomeration rule for hierarchical clustering, etc.)

Measuring similarity/distance

- An important step in many clustering methods is the selection of a distance measure (metric), defining the distance between 2 data points (e.g., 2 genes)

Measuring similarity/distance

- So ... how do we measure the distance between two point in a multi-dimensional space?

Measuring similarity/distance

- So ... how do we measure the distance between two point in a multi-dimensional space?
- Common distance functions:

$$
\begin{gathered}
\text { p-norm } \\
\|\mathbf{x}\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
\end{gathered}
$$

- The Euclidean distance $\|x\|:=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$. 2 -norm (a.k.a "distance as the crow flies" or distance).
- The Manhattan distance (a.k.a taxicab distance)
- The maximum norm (a.k.a infinity distance)

- Correlation (Pearson, Spearman, Absolute Value of Correlation, etc.)

Metric matters!

- The metric of choice has a marked impact on the shape of the resulting clusters:
- Some elements may be close to one another in one metric and far from one anther in a different metric.
- Consider, for example, the point ($x=1, y=1$) and the origin ($x=0, y=0$).
- What's their distance using the 2-norm (Euclidean distance)?
- What's their distance using the 1-norm (a.k.a. taxicab/ Manhattan norm)?
- What's their distance using the infinity-norm?

Hierarchical clustering

Hierarchical clustering

- Hierarchical clustering is an agglomerative clustering method
- Takes as input a distance matrix
- Progressively regroups the closest objects/groups

mmm...

Déjà vu anyone?

Hierarchical clustering algorithm

1. Assign each object to a separate cluster.
2. Find the pair of clusters with the shortest distance, and regroup them into a single cluster.
3. Repeat 2 until there is a single cluster.

- The result is a tree, whose intermediate nodes represent clusters
- Branch lengths represent distances between clusters

Hierarchical clustering

1. Assign each object to a separate cluster.
2. Find the pair of clusters with the shortest distance, and regroup them into a single cluster.
3. Repeat 2 until there is a single cluster.

- One needs to define a (dis)similarity metric between two groups. There are several possibilities
- Average linkage: the average distance between objects from groups A and B
- Single linkage: the distance between the closest objects from groups A and B
- Complete linkage: the distance between the most distant objects from groups A and B

Impact of the agglomeration rule

- These four trees were built from the same distance matrix, using 4 different agglomeration rules.

Hierarchical clustering result

Five clusters

The "philosophy" of clustering - Summary

- "Unsupervised learning" problem
- No single solution is necessarily the true/correct!
- There is usually a tradeoff between homogeneity and separation:
- More clusters \rightarrow increased homogeneity but decreased separation
- Less clusters \rightarrow Increased separation but reduced homogeneity
- Method matters; metric matters; definitions matter;
- In most cases, heuristic methods or approximations are used.

