
 The parsimony principle: 

 Find the tree that requires the  
fewest evolutionary changes! 

 A fundamentally different method:  

 Search rather than reconstruct 

 Parsimony algorithm 

1. Construct all possible trees 

2. For each site in the alignment and for each tree count the 
minimal number of changes required 

3. Add sites to obtain the total number of changes required 
for each tree 

4. Pick the tree with the lowest score 

A quick review 

Too many! 

The small 
parsimony problem 



 Fitch’s algorithm: 

1. Bottom-up phase:  
Determine the set of possible states 

2. Top-down phase:  
Pick a state for each internal node 

 

 Searching the tree space: 

 Exhaustive search 

 branch and bound 

 Hill climbing with  
Nearest-Neighbor Interchange 

A quick review – cont’ 



 1) Construct all possible trees or search the 
space of possible trees using NNI hill-climb 
 

2) For each site in the alignment and for each 
tree count the minimal number of changes 
required using Fitch’s algorithm 
 

3) Add all sites up to obtain the total number 
of changes for each tree 
 

4) Pick the tree with the lowest score or search 
until no better tree can be found 

The parsimony algorithm 



 

Search algorithm - Review 

How can we improve the search  
algorithm and increase our chances of 

finding the optimal tree? 

How can we apply this algorithm to 
solve other problems? 



Parsimony Trees: 
1)Construct all possible trees or 

search the space of possible trees 
2)For each site in the alignment and 

for each tree count the minimal 
number of changes required using 
Fitch’s algorithm 

3)Add all sites up to obtain the total 
number of changes for each tree 

4)Pick the tree with the lowest score 

Phylogenetic trees: Summary 

Distance Trees: 
1)Compute pairwise corrected 

distances. 
2)Build tree by sequential clustering 

algorithm (UPGMA or Neighbor-
Joining). 

3)These algorithms don't consider 
all tree topologies, so they are 
very fast, even for large trees. 
 

Maximum-Likelihood Trees: 
1)Tree evaluated for likelihood of data given tree. 
2)Uses a specific model for evolutionary rates (such as Jukes-Cantor). 
3)Like parsimony, must search tree space. 
4)Usually most accurate method but slow. 



Branch confidence 

How certain are we that this is 
the correct tree? 
 
Can be reduced to many simpler 
questions - how certain are we 
that each branch point is 
correct? 

For example, at the circled 
branch point, how certain are we 
that the three subtrees have the 
correct content: 
 
subtree1: QUA025, QUA013 
Subtree2: QUA003, QUA024, QUA023 
Subtree3: everything else 



Most commonly used  
branch support test: 
 
1. Randomly sample 

alignment sites (with 
replacement). 
 

2. Use sample to estimate 
the tree. 
 

3. Repeat many times. 

 

(sample with replacement means that a sampled site remains in the source 
data after each sampling, so that some sites will be sampled more than once) 

Bootstrap support 



For each branch point on the 
computed tree, count what fraction 
of the bootstrap trees have the 
same subtree partitions (regardless 
of topology within the subtrees). 

For example at the circled branch point, 
what fraction of the bootstrap trees have 
a branch point where the three subtrees 
include: 
 Subtree1: QUA025, QUA013 
 Subtree2: QUA003, QUA024, QUA023 
 Subtree3: everything else 
 
This fraction is the bootstrap support for 
that branch. 

Bootstrap support 



Original tree figure with branch supports  
(here as fractions, also common to give % support) 



Clustering 

Some slides adapted from Jacques van Helden 

Genome 373 

Genomic Informatics 

Elhanan Borenstein 



A common data structure in  
high-throughput biology 



A common data structure in  
high-throughput biology 
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• Genes 
• Proteins 
• Transcripts 
• Species 
• …. 

• Samples 
• Conditions 
• Stimuli 
• Time points 
• Tissues 
• Disease states 
• Locations 
• Cell types 
• … 

 
 

• Expression 
• Abundance 
• Count 
• Rate 
• … 

 



gene y 

gene x 
[0.1, 0.0, 0.6, 1.0, 2.1, 0.4, 0.2, 0.3, 0.5, 0.1, 2.1] 

[0.2, 1.0, 0.8, 0.4, 1.4, 0.5, 0.3, 2.1, 1.2, 3.4,  0.1] 

A common data structure in  
high-throughput biology 



The clustering problem 

gene y 

gene x 
[0.1, 0.0, 0.6, 1.0, 2.1, 0.4, 0.2, 0.3, 0.5, 0.1, 2.1] 

[0.2, 1.0, 0.8, 0.4, 1.4, 0.5, 0.3, 2.1, 1.2, 3.4,  0.1] 



 The goal of gene clustering process is to partition the 
genes into distinct sets such that genes that are 
assigned to the same cluster are “similar”, while 
genes assigned to different clusters are “non-
similar”.  

The clustering problem 

gene y 
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Different views of clustering … 
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Different views of clustering … 



 The goal of gene clustering process is to partition the 
genes into distinct sets such that genes that are 
assigned to the same cluster are “similar”, while 
genes assigned to different clusters are “non-
similar”.  

The clustering problem 

gene y 

gene x 
[0.1, 0.0, 0.6, 1.0, 2.1, 0.4, 0.2, 0.3, 0.5, 0.1, 2.1] 

[0.2, 1.0, 0.8, 0.4, 1.4, 0.5, 0.3, 2.1, 1.2, 3.4,  0.1] 



 A good clustering solution should have two features: 

 
 

1. High homogeneity: homogeneity measures the similarity 
between genes assigned to the same cluster. 

 
 

2. High separation: separation measures the distance/dis-
similarity between clusters.  
(If two clusters have similar expression patterns, then they 
should probably be merged into one cluster). 
 

The clustering problem 



Why clustering 



 Clustering genes or conditions is a basic tool for the 
analysis of expression profiles, and can be useful for 
many purposes, including: 

 Inferring functions of unknown genes  
(assuming a similar expression pattern implies a similar function). 

 Identifying disease profiles  
(tissues with similar pathology should yield similar expression profiles). 

 Deciphering regulatory mechanisms: co-expression of genes 
may imply co-regulation. 

 Reducing dimensionality. 

 

Why clustering 



 Why is clustering a  
hard computational problem? 



 Many algorithms: 
 Hierarchical clustering 

 k-means 

 self-organizing maps (SOM) 

 Knn 

 PCC 

 CLICK 

 There are many formulations of the clustering problem; 
most of them are NP-hard (why?).  

 The results (i.e., obtained clusters) can vary drastically 
depending on:  
 Clustering method 

 Parameters specific to each clustering method (e.g. number 
of centers for the k-mean method, agglomeration rule for 
hierarchical clustering, etc.) 

 

One problem, numerous solutions 



 An important step in many clustering methods is the 
selection of a distance measure (metric), defining the 
distance between 2 data points (e.g., 2 genes) 

 

Measuring similarity/distance 

“Point” 1 

“Point” 2 

: [0.1 0.0 0.6 1.0 2.1 0.4 0.2] 

: [0.2 1.0 0.8 0.4 1.4 0.5 0.3] 

Genes are points in the  
multi-dimensional space Rn 

(where n denotes the  
number of conditions) 

 



 So … how do we measure the distance between two 
point in a multi-dimensional space? 

 

Measuring similarity/distance 

B 

A 



 So … how do we measure the distance between two 
point in a multi-dimensional space? 

 

 Common distance functions: 

 The Euclidean distance  
(a.k.a “distance as the crow flies” or distance).  

 The Manhattan distance  
(a.k.a taxicab distance) 

 The maximum norm  
(a.k.a infinity distance) 

 

 Correlation (Pearson, Spearman, Absolute Value of Correlation, etc.) 

 

Measuring similarity/distance 

p-norm 

2-norm 

1-norm 

infinity-norm 



 The metric of choice has a marked impact on the shape 
of the resulting clusters: 

 Some elements may be close to one another in one metric 
and far from one anther in a different metric.  

 

 Consider, for example, the point (x=1,y=1) and the 
origin (x=0,y=0). 

 What’s their distance using the 2-norm (Euclidean distance )? 

 What’s their distance using the 1-norm (a.k.a. taxicab/ 
Manhattan norm)?  

 What’s their distance using the infinity-norm? 

Metric matters! 



Hierarchical clustering 



 Hierarchical clustering is an agglomerative clustering 
method 

 Takes as input a distance matrix  

 Progressively regroups the closest objects/groups 

 

Hierarchical clustering 

object 2 

object 4 

object 1 

object 3 

object 5 
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nodes 

branch  
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object 1 0.00 4.00 6.00 3.50 1.00

object 2 4.00 0.00 6.00 2.00 4.50

object 3 6.00 6.00 0.00 5.50 6.50

object 4 3.50 2.00 5.50 0.00 4.00

object 5 1.00 4.50 6.50 4.00 0.00

Distance matrix



mmm… 
Déjà vu anyone? 



1. Assign each object to a separate cluster. 

2. Find the pair of clusters with the shortest distance,  
and regroup them into a single cluster. 

3. Repeat 2 until there is a single cluster. 

 

 The result is a tree, whose intermediate nodes 
represent clusters 

 

 Branch lengths represent distances between clusters 

 

Hierarchical clustering algorithm 



Hierarchical clustering 

 One needs to define a (dis)similarity metric between 
two groups. There are several possibilities 

 Average linkage: the average distance between objects from 
groups A and B  

 Single linkage: the distance between the closest objects 
from groups A and B 

 Complete linkage: the distance between the most distant 
objects from groups A and B 

1. Assign each object to a separate cluster. 

2. Find the pair of clusters with the shortest distance,  
and regroup them into a single cluster. 

3. Repeat 2 until there is a single cluster. 



Impact of the agglomeration rule 
 These four trees were built from the same distance matrix, 

using 4 different agglomeration rules.  

 

 

 

 

 

 
Note: these trees were  
computed from a matrix  
of random numbers.  
The impression of  
structure is thus a  
complete artifact. 

Single-linkage typically 
creates nesting clusters 

Complete linkage create 
more balanced trees. 



Hierarchical clustering result 

Five clusters 



 “Unsupervised learning” problem 

 No single solution is necessarily the true/correct! 

 There is usually a tradeoff between homogeneity and 
separation: 

 More clusters  increased homogeneity but decreased separation 

 Less clusters  Increased separation but reduced homogeneity 

 Method matters; metric matters; definitions matter; 

 In most cases, heuristic methods or approximations are 
used.  

The “philosophy” of clustering - Summary 




