
 The parsimony principle:

 Find the tree that requires the
fewest evolutionary changes!

 A fundamentally different method:

 Search rather than reconstruct

 Parsimony algorithm

1. Construct all possible trees

2. For each site in the alignment and for each tree count the
minimal number of changes required

3. Add sites to obtain the total number of changes required
for each tree

4. Pick the tree with the lowest score

A quick review

Too many!

The small
parsimony problem

 Fitch’s algorithm:

1. Bottom-up phase:
Determine the set of possible states

2. Top-down phase:
Pick a state for each internal node

 Searching the tree space:

 Exhaustive search

 branch and bound

 Hill climbing with
Nearest-Neighbor Interchange

A quick review – cont’

 1) Construct all possible trees or search the
space of possible trees using NNI hill-climb

2) For each site in the alignment and for each
tree count the minimal number of changes
required using Fitch’s algorithm

3) Add all sites up to obtain the total number
of changes for each tree

4) Pick the tree with the lowest score or search
until no better tree can be found

The parsimony algorithm

Search algorithm - Review

How can we improve the search
algorithm and increase our chances of

finding the optimal tree?

How can we apply this algorithm to
solve other problems?

Parsimony Trees:
1)Construct all possible trees or

search the space of possible trees
2)For each site in the alignment and

for each tree count the minimal
number of changes required using
Fitch’s algorithm

3)Add all sites up to obtain the total
number of changes for each tree

4)Pick the tree with the lowest score

Phylogenetic trees: Summary

Distance Trees:
1)Compute pairwise corrected

distances.
2)Build tree by sequential clustering

algorithm (UPGMA or Neighbor-
Joining).

3)These algorithms don't consider
all tree topologies, so they are
very fast, even for large trees.

Maximum-Likelihood Trees:
1)Tree evaluated for likelihood of data given tree.
2)Uses a specific model for evolutionary rates (such as Jukes-Cantor).
3)Like parsimony, must search tree space.
4)Usually most accurate method but slow.

Branch confidence

How certain are we that this is
the correct tree?

Can be reduced to many simpler
questions - how certain are we
that each branch point is
correct?

For example, at the circled
branch point, how certain are we
that the three subtrees have the
correct content:

subtree1: QUA025, QUA013
Subtree2: QUA003, QUA024, QUA023
Subtree3: everything else

Most commonly used
branch support test:

1. Randomly sample

alignment sites (with
replacement).

2. Use sample to estimate
the tree.

3. Repeat many times.

(sample with replacement means that a sampled site remains in the source
data after each sampling, so that some sites will be sampled more than once)

Bootstrap support

For each branch point on the
computed tree, count what fraction
of the bootstrap trees have the
same subtree partitions (regardless
of topology within the subtrees).

For example at the circled branch point,
what fraction of the bootstrap trees have
a branch point where the three subtrees
include:
 Subtree1: QUA025, QUA013
 Subtree2: QUA003, QUA024, QUA023
 Subtree3: everything else

This fraction is the bootstrap support for
that branch.

Bootstrap support

Original tree figure with branch supports
(here as fractions, also common to give % support)

Clustering

Some slides adapted from Jacques van Helden

Genome 373

Genomic Informatics

Elhanan Borenstein

A common data structure in
high-throughput biology

A common data structure in
high-throughput biology

776 2905 5317 3275 4580 1083 2169 1817 1553 1391 0 0 0 0 410 0

77 252 117 162 85 250 415 518 37 314 846 651 218 1044 480 942

70 63 83 164 97 186 196 126 68 216 536 475 114 566 183 376

27 31 197 26 157 197 184 67 7 98 677 1504 345 393 148 93

111 367 239 463 508 175 282 77 147 877 0 0 445 447 435 727

240 335 136 167 104 78 142 158 657 130 420 123 93 82 592 158

806 45 49 6 27 31 67 55 18 65 86 294 24 157 152 386

0 100 154 176 426 144 167 6 128 193 144 171 1101 392 92 149

24 156 813 679 374 565 573 0 262 772 456 514 1461 620 137 36

86 163 8 55 0 47 21 239 63 74 706 196 146 0 175 326

0 0 0 5 29 119 28 0 0 0 173 361 0 0 0 20

919 635 0 10 108 0 5 30 17 0 116 176 45 21 384 2

51 154 36 0 48 129 95 30 0 54 168 143 86 357 53 33

516 3 114 109 186 54 6 199 565 118 0 14 0 0 378 163

70 63 83 164 97 186 196 126 68 216 536 475 114 566 183 376

27 31 197 26 157 197 184 67 7 98 677 1504 345 393 148 93

111 367 239 463 508 175 282 77 147 877 0 0 445 447 435 727

240 335 136 167 104 78 142 158 657 130 420 123 93 82 592 158

806 45 49 6 27 31 67 55 18 65 86 294 24 157 152 386

0 100 154 176 426 144 167 6 128 193 144 171 1101 392 92 149

24 156 813 679 374 565 573 0 262 772 456 514 1461 620 137 36

86 163 8 55 0 47 21 239 63 74 706 196 146 0 175 326

0 0 0 5 29 119 28 0 0 0 173 361 0 0 0 20

919 635 0 10 108 0 5 30 17 0 116 176 45 21 384 2

Samples
B

io
lo

gi
ca

l
En

ti
ti

e
s

A common data structure in
high-throughput biology

776 2905 5317 3275 4580 1083 2169 1817 1553 1391 0 0 0 0 410 0

77 252 117 162 85 250 415 518 37 314 846 651 218 1044 480 942

70 63 83 164 97 186 196 126 68 216 536 475 114 566 183 376

27 31 197 26 157 197 184 67 7 98 677 1504 345 393 148 93

111 367 239 463 508 175 282 77 147 877 0 0 445 447 435 727

240 335 136 167 104 78 142 158 657 130 420 123 93 82 592 158

806 45 49 6 27 31 67 55 18 65 86 294 24 157 152 386

0 100 154 176 426 144 167 6 128 193 144 171 1101 392 92 149

24 156 813 679 374 565 573 0 262 772 456 514 1461 620 137 36

86 163 8 55 0 47 21 239 63 74 706 196 146 0 175 326

0 0 0 5 29 119 28 0 0 0 173 361 0 0 0 20

919 635 0 10 108 0 5 30 17 0 116 176 45 21 384 2

51 154 36 0 48 129 95 30 0 54 168 143 86 357 53 33

516 3 114 109 186 54 6 199 565 118 0 14 0 0 378 163

70 63 83 164 97 186 196 126 68 216 536 475 114 566 183 376

27 31 197 26 157 197 184 67 7 98 677 1504 345 393 148 93

111 367 239 463 508 175 282 77 147 877 0 0 445 447 435 727

240 335 136 167 104 78 142 158 657 130 420 123 93 82 592 158

806 45 49 6 27 31 67 55 18 65 86 294 24 157 152 386

0 100 154 176 426 144 167 6 128 193 144 171 1101 392 92 149

24 156 813 679 374 565 573 0 262 772 456 514 1461 620 137 36

86 163 8 55 0 47 21 239 63 74 706 196 146 0 175 326

0 0 0 5 29 119 28 0 0 0 173 361 0 0 0 20

919 635 0 10 108 0 5 30 17 0 116 176 45 21 384 2

Samples
B

io
lo

gi
ca

l
En

ti
ti

e
s

• Genes
• Proteins
• Transcripts
• Species
• ….

• Samples
• Conditions
• Stimuli
• Time points
• Tissues
• Disease states
• Locations
• Cell types
• …

• Expression
• Abundance
• Count
• Rate
• …

gene y

gene x
[0.1, 0.0, 0.6, 1.0, 2.1, 0.4, 0.2, 0.3, 0.5, 0.1, 2.1]

[0.2, 1.0, 0.8, 0.4, 1.4, 0.5, 0.3, 2.1, 1.2, 3.4, 0.1]

A common data structure in
high-throughput biology

The clustering problem

gene y

gene x
[0.1, 0.0, 0.6, 1.0, 2.1, 0.4, 0.2, 0.3, 0.5, 0.1, 2.1]

[0.2, 1.0, 0.8, 0.4, 1.4, 0.5, 0.3, 2.1, 1.2, 3.4, 0.1]

 The goal of gene clustering process is to partition the
genes into distinct sets such that genes that are
assigned to the same cluster are “similar”, while
genes assigned to different clusters are “non-
similar”.

The clustering problem

gene y

gene x
[0.1, 0.0, 0.6, 1.0, 2.1, 0.4, 0.2, 0.3, 0.5, 0.1, 2.1]

[0.2, 1.0, 0.8, 0.4, 1.4, 0.5, 0.3, 2.1, 1.2, 3.4, 0.1]

Different views of clustering …

Different views of clustering …

Different views of clustering …

Different views of clustering …

Different views of clustering …

Different views of clustering …

 The goal of gene clustering process is to partition the
genes into distinct sets such that genes that are
assigned to the same cluster are “similar”, while
genes assigned to different clusters are “non-
similar”.

The clustering problem

gene y

gene x
[0.1, 0.0, 0.6, 1.0, 2.1, 0.4, 0.2, 0.3, 0.5, 0.1, 2.1]

[0.2, 1.0, 0.8, 0.4, 1.4, 0.5, 0.3, 2.1, 1.2, 3.4, 0.1]

 A good clustering solution should have two features:

1. High homogeneity: homogeneity measures the similarity
between genes assigned to the same cluster.

2. High separation: separation measures the distance/dis-
similarity between clusters.
(If two clusters have similar expression patterns, then they
should probably be merged into one cluster).

The clustering problem

Why clustering

 Clustering genes or conditions is a basic tool for the
analysis of expression profiles, and can be useful for
many purposes, including:

 Inferring functions of unknown genes
(assuming a similar expression pattern implies a similar function).

 Identifying disease profiles
(tissues with similar pathology should yield similar expression profiles).

 Deciphering regulatory mechanisms: co-expression of genes
may imply co-regulation.

 Reducing dimensionality.

Why clustering

 Why is clustering a
hard computational problem?

 Many algorithms:
 Hierarchical clustering

 k-means

 self-organizing maps (SOM)

 Knn

 PCC

 CLICK

 There are many formulations of the clustering problem;
most of them are NP-hard (why?).

 The results (i.e., obtained clusters) can vary drastically
depending on:
 Clustering method

 Parameters specific to each clustering method (e.g. number
of centers for the k-mean method, agglomeration rule for
hierarchical clustering, etc.)

One problem, numerous solutions

 An important step in many clustering methods is the
selection of a distance measure (metric), defining the
distance between 2 data points (e.g., 2 genes)

Measuring similarity/distance

“Point” 1

“Point” 2

: [0.1 0.0 0.6 1.0 2.1 0.4 0.2]

: [0.2 1.0 0.8 0.4 1.4 0.5 0.3]

Genes are points in the
multi-dimensional space Rn

(where n denotes the
number of conditions)

 So … how do we measure the distance between two
point in a multi-dimensional space?

Measuring similarity/distance

B

A

 So … how do we measure the distance between two
point in a multi-dimensional space?

 Common distance functions:

 The Euclidean distance
(a.k.a “distance as the crow flies” or distance).

 The Manhattan distance
(a.k.a taxicab distance)

 The maximum norm
(a.k.a infinity distance)

 Correlation (Pearson, Spearman, Absolute Value of Correlation, etc.)

Measuring similarity/distance

p-norm

2-norm

1-norm

infinity-norm

 The metric of choice has a marked impact on the shape
of the resulting clusters:

 Some elements may be close to one another in one metric
and far from one anther in a different metric.

 Consider, for example, the point (x=1,y=1) and the
origin (x=0,y=0).

 What’s their distance using the 2-norm (Euclidean distance)?

 What’s their distance using the 1-norm (a.k.a. taxicab/
Manhattan norm)?

 What’s their distance using the infinity-norm?

Metric matters!

Hierarchical clustering

 Hierarchical clustering is an agglomerative clustering
method

 Takes as input a distance matrix

 Progressively regroups the closest objects/groups

Hierarchical clustering

object 2

object 4

object 1

object 3

object 5

c1

c2

c3

c4

leaf

nodes

branch

node

root

Tree representation

o
b

je
c
t

1

o
b

je
c
t

2

o
b

je
c
t

3

o
b

je
c
t

4

o
b

je
c
t

5

object 1 0.00 4.00 6.00 3.50 1.00

object 2 4.00 0.00 6.00 2.00 4.50

object 3 6.00 6.00 0.00 5.50 6.50

object 4 3.50 2.00 5.50 0.00 4.00

object 5 1.00 4.50 6.50 4.00 0.00

Distance matrix

mmm…
Déjà vu anyone?

1. Assign each object to a separate cluster.

2. Find the pair of clusters with the shortest distance,
and regroup them into a single cluster.

3. Repeat 2 until there is a single cluster.

 The result is a tree, whose intermediate nodes
represent clusters

 Branch lengths represent distances between clusters

Hierarchical clustering algorithm

Hierarchical clustering

 One needs to define a (dis)similarity metric between
two groups. There are several possibilities

 Average linkage: the average distance between objects from
groups A and B

 Single linkage: the distance between the closest objects
from groups A and B

 Complete linkage: the distance between the most distant
objects from groups A and B

1. Assign each object to a separate cluster.

2. Find the pair of clusters with the shortest distance,
and regroup them into a single cluster.

3. Repeat 2 until there is a single cluster.

Impact of the agglomeration rule
 These four trees were built from the same distance matrix,

using 4 different agglomeration rules.

Note: these trees were
computed from a matrix
of random numbers.
The impression of
structure is thus a
complete artifact.

Single-linkage typically
creates nesting clusters

Complete linkage create
more balanced trees.

Hierarchical clustering result

Five clusters

 “Unsupervised learning” problem

 No single solution is necessarily the true/correct!

 There is usually a tradeoff between homogeneity and
separation:

 More clusters  increased homogeneity but decreased separation

 Less clusters  Increased separation but reduced homogeneity

 Method matters; metric matters; definitions matter;

 In most cases, heuristic methods or approximations are
used.

The “philosophy” of clustering - Summary

