
Parsimony
Small Parsimony and Search Algorithms

Genome 559: Introduction to Statistical and

Computational Genomics

Elhanan Borenstein

� The parsimony principle:

� Find the tree that requires the

fewest evolutionary changes!

� A fundamentally different method:

� Search rather than reconstruct

� Parsimony algorithm

1. Construct all possible trees

2. For each site in the alignment and for each tree count the

minimal number of changes required

3. Add sites to obtain the total number of changes required

for each tree

4. Pick the tree with the lowest score

A quick review

� The parsimony principle:

� Find the tree that requires the

fewest evolutionary changes!

� A fundamentally different method:

� Search rather than reconstruct

� Parsimony algorithm

1. Construct all possible trees

2. For each site in the alignment and for each tree count the

minimal number of changes required

3. Add sites to obtain the total number of changes required

for each tree

4. Pick the tree with the lowest score

A quick review

Too many!

The small

parsimony problem

� We divided the problem of finding the most

parsimonious tree into two sub-problems:

� Large parsimony: Find the topology which gives best score

� Small parsimony: Given a tree topology and the state in all

the tips, find the minimal number of changes required

� Large parsimony is “NP-hard”

� Small parsimony can be solved quickly using Fitch’s

algorithm

Large vs. Small Parsimony

� Input:

1. A tree topology:

The Small Parsimony Problem

human chimp gorillalemurgibbon bonobo

Human C A C T

Chimp T A C T

Bonobo A G C C

Gorilla A G C A

Gibbon G A C T

Lemur T A G T

� Output:
The minimal number of changes required: parsimony score

2. State assignments for

all tips:

human chimp gorillalemurgibbon bonobo

C T G T A A

(but in fact, we will also find the most parsimonious

assignment for all internal nodes)

� Execute independently for each character:

� Two phases:

1. Bottom-up phase: Determine the set of possible

states for each internal node

2. Top-down phase: Pick a state for each internal node

Fitch’s algorithm

human chimp gorillalemurgibbon bonobo

C T G T A A

21

1. Initialization: Ri = {si} for all tips

2. Traverse the tree from leaves to root (“post-order”)

3. Determine Ri of internal node i with children j, k:

1. Fitch’s algorithm: Bottom-up phase
(Determine the set of possible states for each internal node)













∪→

∩→≠∩
=

kj

kjkj

i
RRotherwise

RRRRif
R

φ

human chimp gorillalemurgibbon bonobo

C T G T A A

1
C,T G,T

G,T,A

T

T,A
Let si denote the

state of node i and Ri

the set of possible

states of node i

1. Initialization: Ri = {si}

2. Traverse the tree from leaves to root (“post-order“)

3. Determine Ri of internal node i with children j, k:

1. Fitch’s algorithm: Bottom-up phase
(Determine the set of possible states for each internal node)

human chimp gorillalemurgibbon bonobo

C T G T A A

1
C,T G,T

G,T,A

T













∪→

∩→≠∩
=

kj

kjkj

i
RRotherwise

RRRRif
R

φ

Parsimony-score =

union operations

Parsimony-score = 4

T,A

1. Pick arbitrary state in Rroot to be the state of the root ,sroot

2. Traverse the tree from root to leaves (“pre-order”)

3. Determine si of internal node i with parent j:

2. Fitch’s algorithm: Top-down phase
(Pick a state for each internal node)









∈→

→∈
=

i

jij

i
Rstatearbitraryotherwise

sRsif
s

human chimp gorillalemurgibbon bonobo

C T G T A A

C,T G,T

G,T,A

T

Parsimony-score = 4

2

T,A

TT

T

T

A

1. Pick arbitrary state in Rroot to be the state of the root ,sroot

2. Traverse the tree from root to leaves (“pre-order”)

3. Determine si of internal node i with parent j:

2. Fitch’s algorithm: Top-down phase
(Pick a state for each internal node)

human chimp gorillalemurgibbon bonobo

C T G T A A

Parsimony-score = 4

2









∈→

→∈
=

i

jij

i
Rstatearbitraryotherwise

sRsif
s

And now

back to the “big” parsimony problem

…

How do we find the most parsimonious tree

amongst the many possible trees?

� Exhaustive search:

Up to 8-10 leaves (10k-2m unrooted trees, 135k-34m rooted)

Guaranteed results

� Branch-and-bound*:

Up to 10-20 leaves

Guaranteed results!!!

* Branch-and-bound is a clever way of ruling out most trees as they are built,

so you can evaluate more trees by exhaustive search.

� Heuristic search (e.g. hill-climb):

20+ leaves

May not find correct solution.

Searching tree space

Hill-climbing

Rejected

related tree
Starting tree

Different

trees

Parsimony

score

Accepted

related tree

Final tree

still possible

that best

tree is here

A “greedy” algorithm

Nearest-Neighbor Interchange (NNI)

Sub-tree

1. Find a tree with some score.

2. At each internal branch consider the two alternative

arrangements of the 4 sub-trees.

3. Keep the tree that has the best score.

4. Repeat.

three (of many)

places where NNI

can be considered

Hill-climbing with NNI

Rejected NNI

tree
Starting tree

Different

trees

Parsimony

score

Accepted

NNI tree

Final tree

still possible

that best

tree is here

A “greedy” algorithm

How can we improve this algorithm

and increase our chances of finding

the optimal tree?

1) Construct all possible trees or search the

space of possible trees using NNI hill-climb

2) For each site in the alignment and for each

tree count the minimal number of changes

required using Fitch’s algorithm

3) Add all sites up to obtain the total number

of changes for each tree

4) Pick the tree with the lowest score or search

until no better tree can be found

The parsimony algorithm

Parsimony Trees:

1)Construct all possible trees or

search the space of possible trees

2)For each site in the alignment and

for each tree count the minimal

number of changes required using

Fitch’s algorithm

3)Add all sites up to obtain the total

number of changes for each tree

4)Pick the tree with the lowest score

Phylogenetic trees: Summary

Distance Trees:

1)Compute pairwise corrected

distances.

2)Build tree by sequential clustering

algorithm (UPGMA or Neighbor-

Joining).

3)These algorithms don't consider

all tree topologies, so they are

very fast, even for large trees.

Maximum-Likelihood Trees:

1)Tree evaluated for likelihood of data given tree.

2)Uses a specific model for evolutionary rates (such as Jukes-Cantor).

3)Like parsimony, must search tree space.

4)Usually most accurate method but slow.

Branch confidence

How certain are we that this is

the correct tree?

Can be reduced to many simpler

questions - how certain are we

that each branch point is

correct?

For example, at the circled

branch point, how certain are we

that the three subtrees have the

correct content:

subtree1 - QUA025, QUA013

subtree2 - QUA003, QUA024, QUA023

subtree3 - everything else

Most commonly used

branch support test:

1. Randomly sample

alignment sites.

2. Use sample to estimate

the tree.

3. Repeat many times.

(sample with replacement means that a sampled site remains in the source

data after each sampling, so that some sites will be sampled more than once)

Bootstrap support

For each branch point on the

computed tree, count what fraction

of the bootstrap trees have the same

subtree partitions (regardless of

topology within the subtrees).

For example at the circled branch point,

what fraction of the bootstrap trees have

a branch point where the three subtrees

include:

subtree1 - QUA025, QUA013

subtree2 - QUA003, QUA024, QUA023

subtree3 - everything else

This fraction is the bootstrap support for

that branch.

Bootstrap support

low-confidence branches

are marked

Original tree figure with branch supports
(here as fractions, also common to give % support)

