
Regular Expressions

Genome 559: Introduction to Statistical and

Computational Genomics

Elhanan Borenstein

A quick review

� Arguments and return values:
� Returning multiple values from a function:

return [sum, prod]

� Pass-by-reference vs. pass-by-value

� Default Arguments
def printMulti(text, n=3):

� Keyword Arguments
runBlast(“my_f.txt”, matrix=“PAM40”)

� Modules:

� A file containing a set of related functions

� Easy to create and use your own modules

� First import it: import utils …

� Then use dot notation: utils.makeDict()

A quick review – cont’

� Recursion:

� A function that calls itself

� Divide and conquer algorithms

� Every recursion must have two key features:
1. There are one or more base cases for which no recursion is applied.

2. All recursion chains eventually end up at one of the base cases.

� Examples:
� Factorial, string reversal

� Binary search

� Traversing trees

� Merge sort

� Recursion vs. iteration

Strings

� ‘abc’

� “abc”

� ‘’’ abc’’’

� r’abc’

A B C

Newlines are a bit more complicated

� ‘abc\n’

� “abc\n”

� ‘’’abc

’’’

� r’abc\n’

A B C

A B C \ n

Why so many?

� ‘ vs “ lets you put the other kind inside a string. Very

Useful.

� ‘’’ lets you run across multiple lines.

� All 3 let you include and show invisible characters

(using \n, \t, etc.)

� r’...’ (raw strings) do not support invisible character,

but avoid problems with backslash. Will become

useful very soon.

open(’C:\new\text.dat’) vs.

open(’C:\\new\\text.dat’) vs.

open(r’C:\new\text.dat’)

� As you recall, the string data type supports a verity of

operations:

String operations

>>> my_str = 'tea for too‘

>>> print my_str.replace('too','two')

'tea for two'

>>> print my_str.upper()

TEA FOR TOO

>>> my_str.split(‘ ‘)

[‘tea’, ‘for’, ‘too’]

>>> print my_str.find(“o")

5

>>> print my_str.count(“o")

3

But …

� What if we want to do more complex things?

� Get rid of all punctuation marks

� Find all dates in a long text and convert them to a specific

format

� Delete duplicated words

� Find all email addresses in a long text

� Find everything that “looks” like a gene name in some

output file

� Split a string whenever a certain word (rather than a certain

character) occurs

� Find DNA motifs in a Fasta file

� We can always write a program that does that …

assume we have a genome sequence in string variable myDNA

for index in range(0,len(myDNA)-20) :

if (myDNA[index] == "A" or myDNA[index] == "G") and

(myDNA[index+1] == "A" or myDNA[index+1] == "G") and

(myDNA[index+2] == "A" or myDNA[index+2] == "G") and

(myDNA[index+3] == "C") and

(myDNA[index+4] == “A") and

and on and on!

…

(myDNA[index+19] == "C" or myDNA[index+19] == "T") :

print "Match found at ",index

break

6

Well …

Regular expressions

� Regular expressions (a.k.a. RE, regexp, regexes, regex)

are a highly specialized text-matching tool.

� Regex can be viewed as a tiny programming language

embedded in Python and made available through

the re module.

� They are extremely useful in searching and modifying

(long) string

� http://docs.python.org/library/re.html

Not only in Python

� REs are very widespread:

� Unix utility “grep”

� Perl

� TextWrangler

� TextPad

� Python

� So, … learning the “RE language” would serve you in

many different environments as well.

Do you absolutely need regexes?

� No, everything they do, you could do yourself!

� BUT … pattern-matching is:

� Widely used (especially in bioinf applications)!

� Tedious to program!

� Error-prone!

� RE give you a flexible, systematic, compact, and

automatic way to do it.
(In truth, it’s still somewhat error-prone, but in a different way).

Regexe vs. Python

� The regular expression language is relatively small and

restricted

� Not all possible string processing tasks can be done using

regular expressions.

� Some tasks can be done with RE, but the expressions turn

out to be extremely complicated.

� In these cases, you may be better off writing a Python

code to do the processing:

� Python code may take longer to write

� It will be slower than an elaborate regular expression

� But … it will also probably be more understandable.

Let’s get to it:

How do regexes work?

Valentine Day Special!

It’s all about finding a great match

Finding a good match

� Using this RE tiny language, you can specify patterns

that you want to match

� You can then ask match questions such as:

� “Does this string match this pattern?”

� “Is there a match to this pattern anywhere in this string?”

� “What are all the matches to this pattern in this string?”

� You can also use REs to modify a string

� Replace parts of a string (sub) that match the pattern with

something else

� Break stings into smaller pieces (split) wherever this pattern

is matched

A simple example

� Consider the following example:

� Note the re. prefix – findall is a function in the re

module

� findall:
� Format: findall(<regexe>, <string>)

� Returns a list of all non-overlapping substrings that matches the regexe.

� REs are provided as strings.

>>> import re

>>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')

['foot', 'fell', 'fastest']
This RE means: A word that starts

with ‘f’ followed by any number

of alphabetical characters

Remember:

It’s all about matching

Regular expressions are patterns;

they “match” sequences of characters

Basic RE matching

� Most letters and numbers match themselves

� For example, the regular expression test will match the

string test exactly

� Normally case sensitive

� Most punctuation marks have special meanings!

� Metacharacters: . ^ $ * + ? { [] \ | ()

� needs to be escaped by backslash (e.g., “\.” instead of “.”) to

get non-special behavior

� Therefore, “raw” string literals (r’C:\new.txt’) are generally

recommended for regexes (unless you double your

backslashes judiciously)

>>> re.findall(r’test’, “Tests are testers’ best testimonials”)

[‘test', ‘test']

Sets

� Square brackets mean that any of the listed characters

will do (matching one of several alternatives)

� [abc] means either ”a” , ”b” , or “c”

� You can also give a range:

� [a-d] means ”a”, ”b”, ”c”, or ”d”

� Negation: caret means not

� [^a-d] means anything but a, b, c or d

� [^5] means anything but 5

� Metacharacters are not active inside sets.

� [ak$] will match “a”, “k”, or “$”. Normally, “$” is a

metacharacter. Inside a set it’s stripped of its special nature.

Predefined sets
� \d matches any decimal digit

(equivalent to [0-9]).

� \D matches any non-digit character

(equivalent to [^0-9]).

� \s matches any whitespace character

(equivalent to [\t\n\r\f\v]).

� \S matches any non-whitespace character

(equivalent to [^ \t\n\r\f\v]).

� \w matches any alphanumeric character

(equivalent to [a-zA-Z0-9_]).

� \W matches any non-alphanumeric character

(equivalent to the class [^a-zA-Z0-9_].

Note the pairs.

Easy to remember!

Matching boundaries
� ^ matches the beginning of the string

� $ matches the end of the string

� \b matches a word boundary

� \B matches position that is not a word boundary

(A word boundary is a position that changes from a word

character to a non-word character, or vice versa).

For example, \bcat will match catalyst but not location

Wildcards

� . matches any character (except newline)

� If you really mean “.” you must use a backslash

� WARNING:

� backslash is special in Python strings

� It’s special again in RE

� This means you need too many backslashes

� Use ”raw strings” to make things simpler

� What does this RE means: r’\d\.\d’?

Repetitions

� Allows you to specify that a portion of the RE must/can

be repeated a certain number of times.

� * : The previous character can repeat 0 or more times

� ca*t matches ”ct”, ”cat”, ”caat”, ”caaat” etc.

� + : The previous character can repeat 1 or more times

� ca+t matches ”cat”, ”caat” etc. but not ”ct”

� Braces provide a more detailed way to indicate repeats

� A{1,3} means at least one and no more than three A’s

� A{4,4} means exactly four A’s

A quick example

� Remember this PSSM:

re.findall(r’[AG]{3,3}CATG[TC]{4,4}[AG]{2,2}C[AT]TG[CT][CG][TC]’, myDNA)

More examples
>>> re.sub('\d', 'x', 'a_b - 12')

'a_b - xx'

>>> re.sub('\D', 'x', 'a_b - 12')

'xxxxxx12'

>>> re.sub('\s', 'x', 'a_b - 12')

'a_bx-x12'

>>> re.sub('\S', 'x', 'a_b - 12')

'xxx x xx'

>>> re.sub('\w', 'x', 'a_b - 12')

'xxx - xx'

>>> re.sub('\W', 'x', 'a_b - 12')

'a_bxxx12‘

>>> re.sub('^', 'x', 'a_b - 12')

'xa_b - 12'

>>> re.sub('$', 'x', 'a_b - 12')

'a_b - 12x'

>>> re.sub('\b', 'x', 'a_b - 12')

'a_b - 12'

>>> re.sub('\\b', 'x', 'a_b - 12')

'xa_bx - x12x'

>>> re.sub(r'\b', 'x', 'a_b - 12')

'xa_bx - x12x'

>>> re.sub('\B', 'x', 'a_b - 12')

'ax_xb x-x 1x2'

RE Semantics

� If R, S are regexes:

� RS matches the concatenation of strings matched by R, S

individually

� R|S matches the union (either R or S)

� Parentheses can be used for grouping

� (abc)+ matches ‘abc’, ‘abcabc’, ‘abcabcabc’, etc.

� this|that matches ‘this’ and ‘that’, but not ‘thisthat’.

Conflicts?

� Check this example:

� What do you think all_matchs contains?

>>> import re

>>> mystring = "This contains 2 files, hw3.py and uppercase.py."

>>> all_matches = re.findall(r’.+\.py’, mystring)

>>> print all_matches

[’ This contains 2 files, hw3.py and uppercase.py’]

What happened?

Matching is greedy

� Our RE matches “hw3.py”

� Unfortunately …

� It also matches: “This contains 2 files, hw3.py”

� And it even matches: “This contains 2 files, hw3.py and

uppercase.py”

� Python will choose the longest match!

� Solution:

� Break my text first into words (not an ideal solution)

� I could specify that no spaces are allowed in my match

>>> import re

>>> mystring = "This contains 2 files, hw3.py and uppercase.py."

>>> all_matches = re.findall(r’.+\.py’, mystring)

>>> print all_matches

[’ This contains 2 files, hw3.py and uppercase.py’]

A better version

� This will work:

>>> import re

>>> mystring = "This contains 2 files, hw3.py and uppercase.py."

>>> all_matches = re.findall(r’ [^]+\.py’, mystring)

>>> print all_matches

[’hw3.py’,’uppercase.py’]

TIP

OF THE

DAY

Code like a pro …

� Suppose you are not sure:

� … whether the format you are using for a certain command

is the correct one

� or … whether range(4) returns 0 to 4 or 0 to 3

� or … whether string has a method “reverse”

� or … whether you are allowed to break inside a nested loop

� or … whether your code is correct

What should you do?

TIP

OF THE

DAY

Code like a pro …

� JUST RUN IT!!!

� Don’t be afraid:

� Running a bugged code will not harm your computer!

� (it also should not hurt your self-esteem)

� It doesn’t cost anything

� It will be faster (and more accurate) than you trying to

“think it through”

� In many cases, the error message or output will be

extremely informative

“The freedom to run experiments is the most

precious luxury of computational biologists”
Nanahle Nietsnerob

Sample problem #1

� Download the course webpage (e.g., use the “save as”

option). Write a program that reads this webpage text

and scan for all the email addresses in it.

� An email address usually follows these guidelines:

� Upper or lower case letters or digits

� Starting with a letter

� Followed by a the “@” symbol

� Followed by a string of alphanumeric characters. No spaces

are allowed

� Followed by a the dot “.” symbol

� Followed by a domain extension. Assume domain

extensions are always 3 alphanumeric characters long (e.g.,

“com”, “edu”, “net”.

import sys

import re

file_name = sys.argv[1]

file = open(file_name,"r")

text = file.read()

addresses = re.findall(r'[a-zA-Z]\w*@\w+\.\w{3,3}', text)

print addresses

Solution #1

[‘jht@uw.edu’, ‘elbo@uw.edu’]

What’s missing

Sample problem #2

1. Download and save warandpeace.txt. Write a program

to read it line-by-line. Use re.findall to check whether

the current line contains one or more “proper” names

ending in “...ski”. If so, print these names:

2. Now, instead of printing these names for each line,

insert them into a dictionary and just print all the

“…ski” names that appear in the text at the end of your

program (preferably sorted):

['Bolkonski']

['Bolkonski']

['Bolkonski']

['Bolkonski']

['Volkonski']

['Volkonski']

['Volkonski']

Aski

Bitski

Bolkonski

Borovitski

Bronnitski

Czartoryski

Golukhovski

Gruzinski

Solution #2.1
import sys

import re

file_name = sys.argv[1]

file = open(file_name,"r")

names_dict = {} # A dictionary for storing all names

for line in file:

names = re.findall(r'\w+ski', line)

if len(names) > 0:

print names

file.close()

Solution #2.2
import sys

import re

file_name = sys.argv[1]

file = open(file_name,"r")

names_dict = {} # A dictionary for storing all names

for line in file:

names = re.findall(r'\w+ski', line)

for name in names:

names_dict[name] = 1

file.close()

name_list = names_dict.keys()

name_list.sort()

for name in name_list:

print name

Challenge problem

� “Translate” War and Peace to Pig Latin.

� The rules of translations are as follows:

� If a word starts with a consonant: move it to the end and

append “ay”

� Else, for words that starts with a vowel, keep as is, but add

“zay” at the end

� Examples:

� beast → eastbay

� dough → oughday

� happy → appyhay

� another→ anotherzay

� if→ ifzay

