Regular Expressions

Genome 559: Introduction to Statistical and
Computational Genomics

Elhanan Borenstein

A quick review

= Arguments and return values:

Returning multiple values from a function:
return [sum, prod]

Pass-by-reference vs. pass-by-value

Default Arguments
def printMulti (text, n=3):

Keyword Arguments
runBlast ("my_ f.txt”, matrix=“PAM40")

= Modules:

A file containing a set of related functions
Easy to create and use your own modules
First import it: import utils ..

Then use dot notation: utils.makeDict ()

utils.py

This function makes a dictionary
def makeDict(fileName):
myFile = open (fileName, "r")
myDict = {}
for line in myFile:
fields = line.strip().split("\t")
myDict[fields[0]] = float(fields[1]
myFile.close()
return myDict

This function reads a 2D matrix
def makeMatrix (fileName) :
e o OF

my_prog.py

import utils
import sys

Dictl = utils.makeDict(sys.argv([1l])
Dict2 = utils.makeDict(sys.argv([2])

Mtrx = utils.makeMatrix (“blsm.txt”)

A quick review — cont’

factorial(5)

= Recursion:

= A function that calls itself

= Divide and conquer algorithms

= Every recursion must have two key features:

1. There are one or more base cases for which no recursion is applied.
2. All recursion chains eventually end up at one of the base cases.

= Examples:

= Factorial, string reversal
= Binary search
= Traversing trees

= Merge sort

= Recursion vs. iteration

Strings

‘abc

o 1

abc

() ’27)

abc

r'abc’

Newlines are a bit more complicated

= ‘Qbc\n’

- uabc\nn

()

abc

’77)

A[B|(C|\|n
o r’abc\n’/

Why so many?

“vs “lets you put the other kind inside a string. Very
Useful.

“’ lets you run across multiple lines.

All 3 let you include and show invisible characters
(using \n, \t, etc.)

r’... (raw strings) do not support invisible character,
but avoid problems with backslash. Will become
useful very soon.

open(’'C:\new\text.dat’) vs.
open(’'C:\\new\\text.dat’) vs.
open (r’C:\new\text.dat’)

String operations

= As you recall, the string data type supports a verity of
operations:

>>> my_ str = 'tea for too'
>>> print my_str.replace('too’', 'two')
'tea for two'

>>> print my_ str.upper ()
TEA FOR TOO

>>> my str.split (‘' ‘)
[‘tea’, ‘for’, ‘too’]

>>> print my str.find(%“o")
5
>>> print my str.count (“o")
3

But ...

* What if we want to do more complex things?
= Get rid of all punctuation marks

= Find all dates in a long text and convert them to a specific
format

= Delete duplicated words
* Find all email addresses in a long text

" Find everything that “looks” like a gene name in some
output file

= Split a string whenever a certain word (rather than a certain
character) occurs

= Find DNA motifs in a Fasta file

............

Well ...

= We can always write a program that does that ...

assume we have a genome sequence in string variable myDNA
for index in range (0, len (myDNA)-20)

if (myDNA[index] == "A" or myDNA[index] == "G") and
(myDNA[index+1l] == "A" or myDNA[index+l] == "G") and
(myDNA[index+2] == "A" or myDNA[index+2] == "G") and
(myDNA[index+3] == "C") and
(myDNA[index+4] == “A") and
and on and on!
(myDNA[index+19] == "C" or myDNA[index+19] == "T")

print '"Match found at ", index

break

Regular expressions

Regular expressions (a.k.a. RE, regexp, regexes, regex)
are a highly specialized text-matching tool.

Regex can be viewed as a tiny programming language
embedded in Python and made available through
the re module.

They are extremely useful in searching and modifying
(long) string

http://docs.python.org/library/re.html|

Not only in Python

= REs are very widespread:
= Unix utility “grep”
= Perl
= TextWrangler
= TextPad
= Python

= So, ... learning the “RE language” would serve you in
many different environments as well.

Do you absolutely need regexes?

No, everything they do, you could do yourself!

BUT ... pattern-matching is:

= Widely used (especially in bioinf applications)!
= Tedious to program!

* Error-prone!

RE give you a flexible, systematic, compact, and

automatic way to do it.
(In truth, it’s still somewhat error-prone, but in a different way).

Regexe vs. Python

= The regular expression language is relatively small and
restricted

* Not all possible string processing tasks can be done using
regular expressions.

= Some tasks can be done with RE, but the expressions turn
out to be extremely complicated.

" |n these cases, you may be better off writing a Python
code to do the processing:

= Python code may take longer to write
= |t will be slower than an elaborate regular expression
= But... it will also probably be more understandable.

Let’s get to it:
How do regexes work?

.

Valentine Day Special! = B
It’s all about finding a great match

Finding a good match

= Using this RE tiny language, you can specify patterns
that you want to match

= You can then ask match questions such as:
" “Does this string match this pattern?”
= “Is there a match to this pattern anywhere in this string?”
= “What are all the matches to this pattern in this string?”

" You can also use REs to modify a string

= Replace parts of a string (sub) that match the pattern with
something else

= Break stings into smaller pieces (split) wherever this pattern
is matched

A simple example

Consider the following example:

>>> import re
>>> re.findall (r'\bf[a-z]*', 'which foot or hand fell fastest')

pa—
A 4

['foot', 'fell', 'fastest']
This RE means: A word that starts

with ‘f’ followed by any number —
| of alphabetical characters

Note the re. prefix — findall is a function in the re
module

findall:

= Format: findall (<regexe>, <string>)

= Returns a list of all non-overlapping substrings that matches the regexe.

REs are provided as strings.

Remember:
It’s all about matching

Regular expressions are patterns;
they “match” sequences of characters

Basic RE matching

= Most letters and numbers match themselves

" For example, the regular expression test will match the
string test exactly

* Normally case sensitive

>>> re.findall(r'test’, “Tests are testers’ best testimonials”)
[‘test', ‘test']

= Most punctuation marks have special meanings!
= Metacharacters: . ~ $ * + 2 { [1 \ | ()

= needs to be escaped by backslash (e.g., “\.” instead of “’) to
get non-special behavior

= Therefore, “raw” string literals (r’'C:\new.txt’) are generally
recommended for regexes (unless you double your
backslashes judiciously)

Sets

Square brackets mean that any of the listed characters
will do (matching one of several alternatives)

o, _n”n

[abc] means either "a” , "b” , or “c

You can also give a range:

[a—d] means ”a”’ ”b”’ ”CH’ Or ”d”

Negation: caret means not

[~a—d] means anything but a, b, cord
[~5] means anything but 5

Metacharacters are not active inside sets.

[ak$] will match “a”, “k”, or “S”. Normally, “S” is a
metacharacter. Inside a set it’s stripped of its special nature.

Predefined sets

\d matches any decimal digit
(equivalentto [0-91]).

\D matches any non-digit character
(equivalentto [*0—-91). _

\s matches any whitespace character Note the pairs.
(equivalent to | \t\n\r\f\v]) Easy to remember!

\'S matches any non-whitespace character
(equivalentto [* \t\n\r\f\v]). y

\w matches any alphanumeric character A
(equivalentto [a—zA-Z0-9_1).

\W matches any non-alphanumeric character
(equivalent to the class ["a—zA-7Z0-9_].

~

Matching boundaries

~ matches the beginning of the string

S matches the end of the string

\b matches a word boundary

\ B matches position that is not a word boundary

(A word boundary is a position that changes from a word
character to a non-word character, or vice versa).

For example, \bcat will match catalyst but not location

Wildcards

. matches any character (except newline)

o

If you really mean “” you must use a backslash

WARNING:

= backslash is special in Python strings

" |t’s special again in RE

* This means you need too many backslashes
" Use “raw strings” to make things simpler

What does this RE means: r’ \d\ .\d’?

Repetitions

Allows you to specify that a portion of the RE must/can
be repeated a certain number of times.

* : The previous character can repeat O or more times

” »n ” »n ” »n

= ca*t matches ”ct”, “cat”, “caat”, "caaat” etc.

+ : The previous character can repeat 1 or more times

” »n

= ca+t matches “cat”, “caat” etc. but not “ct”

Braces provide a more detailed way to indicate repeats
= A{1, 3} means at least one and no more than three A’s
= A{4, 4} means exactly four A’s

A quick example

= Remember this PSSM:

re.findall(r’'[AG]{3,3}CATG[TC]{4,4}[AG]{2,2}C[AT]TG[CT][CG][TC]’, myDNA)

More examples

>>> re.sub('\d’',
'a b - xx'

>>> re.sub('\D',
'xxxxxx12'

>>> re.sub('\s'
'a bx-x12"

>>> re.sub('\S',
xx'

.sub ('\w',
xx'
sub('\W',
'a bxxxl2®

>>> re.sub('*',
'xa_b - 12"

>>> re.sub('$’',
'a_b - 12x'

>>> re.sub('\b',
'a_ b - 12"

>>> re

'XXX X
>>> re
'Xxx -
>>> re.

'xa bx - x12x'
>>> re
- x12x'

.sub('\B',

x-x 1x2'

'xa bx
>>> re
'ax xb

.sub('\\b',

.sub(r'\b"',

'x', 'a_b 12')
'x', 'ab - 12")
'x', 'ab - 12")
'x', 'ab - 12")
'x', 'ab - 12")
'x', 'ab - 12")
'x', 'ab - 12")
'x', 'ab - 12")
'x', 'ab - 12")

'x', 'ab - 12")

'x', 'ab - 12")
'x', 'ab - 12")

RE Semantics

= |fR, S are regexes:

" RS matches the concatenation of strings matched by R, S
individually

= R|S matches the union (either R or S)

= Parentheses can be used for grouping
= (abc) + matches ‘abc’, ‘abcabc’, ‘abcabcabc’, etc.
= this|that matches ‘this’ and ‘that’, but not ‘thisthat’.

Conflicts?

= Check this example:

>>> import re

>>> mystring = "This contains 2 files, hw3.py and uppercase.py."
>>> all matches = re.findall(r’ .+\.py’, mystring)

>>> print all_matches

= What do you think all_matchs contains?

[’ This contains 2 files, hw3.py and uppercase.py’]

What happened?

Matching is greedy

>>> import re

>>> mystring = "This contains 2 files, hw3.py and uppercase.py."
>>> all matches = re.findall(r’ .+\.py’, mystring)

>>> print all_matches

[’ This contains 2 files, hw3.py and uppercase.py’]

= QOur RE matches “hw3.py”

= Unfortunately ...
= |t also matches: “This contains 2 files, hw3.py”

= And it even matches: “This contains 2 files, hw3.py and
uppercase.py”

= Python will choose the longest match!
= Solution:

= Break my text first into words (not an ideal solution)
= | could specify that no spaces are allowed in my match

A better version

= This will work:

>>> import re

>>> mystring = "This contains 2 files, hw3.py and uppercase.py."
>>> all matches = re.findall(r’ [~]+\.py’, mystring)

>>> print all_matches

["hw3.py’, 'uppercase.py’]

r'.+\.py" "Two files: hw3.py and upper.py."
I ——

r"\w+\.py" "Two files: hw3.py and UPPER.py."
| I— —

Code like a pro ... o

DAY

= Suppose you are not sure:

= ... whether the format you are using for a certain command
is the correct one

= or..whetherrange(4) returns0to4 or0Oto 3
= or.. whether string has a method “reverse”
= or.. whether you are allowed to break inside a nested loop

= or.. whether your code is correct

What should you do?

Code like a pro ...

= JUST RUN IT!!!
= Don’t be afraid:

Running a bugged code will not harm your computer!
(it also should not hurt your self-esteem)
It doesn’t cost anything

It will be faster (and more accurate) than you trying to
“think it through”

In many cases, the error message or output will be
extremely informative

“The freedom to run experiments is the most
precious luxury of computational biologists”

Nanahle Nietsnerob

TIP
OF THE
DAY

= Download the course webpage (e.g., use the “save as’

Sample problem #1

’

option). Write a program that reads this webpage text
and scan for all the email addresses in it.

= An email address usually follows these guidelines:

Upper or lower case letters or digits
Starting with a letter
Followed by a the “@” symbol

Followed by a string of alphanumeric characters. No spaces
are allowed

o’

Followed by a the dot “” symbol

Followed by a domain extension. Assume domain
extensions are always 3 alphanumeric characters long (e.g.,

”n ”

“com”, “edu”, “net”.

Solution #1

import sys
import re

file name = sys.argv|[l] What’s missing
file = open(file_name, "r")
text = file.read()

addresses = re.findall(r'[a-zA-Z]\w*@\w+\.\w{3,3}', text)
print addresses

['Jht@Quw.edu’, ‘elboQ@uw.edu’]

Sample problem #2

1. Download and save warandpeace.txt. Write a program
to read it line-by-line. Use re.findall to check whether
the current line contains one or more “proper” names
ending in “..ski”. If so, print these names:

'Bolkonski’
'Bolkonski’
'Bolkonski’
'Bolkonski’
'Volkonski'
'Volkonski'
'Volkonski'

2. Now, instead of printing these names for each line,
insert them into a dictionary and just print all the
“...ski” names that appear in the text at the end of your
program (preferably sorted): Akl

Bitski
Bolkonski
Borovitski
Bronnitski
Czartoryski
Golukhovski
Gruzinski

e T s B o B e T s T o T |
bt hd bd bt Rd hd d

Solution #2.1

import sys
import re

file_name = sys.argv|[l]
file = open(file name, "r")

names_dict = {} # A dictionary for storing all names
for line in file:
names = re.findall(r'\w+ski', line)
if len(names) > O0:
print names

file.close()

Solution #2.2

import sys
import re

file_name = sys.argv|[l]
file = open(file name, "r")

names_dict = {} # A dictionary for storing all names
for line in file:
names = re.findall(r'\w+ski', line)
for name in names:
names_dict[name] =1

file.close()

name_list = names_dict.keys ()
name_list.sort ()

for name in name list:
print name

Challenge problem

= “Translate” War and Peace to Pig Latin.
= The rules of translations are as follows:

= |f a word starts with a consonant: move it to the end and
append “ay”

= Else, for words that starts with a vowel, keep as is, but add
“zay” at the end

= Examples:
= beast - eastbay
= dough - oughday
= happy = appyhay
= another—> anotherzay
= if- ifzay

