Sequence comparison:
Significance of similarity scores

http://faculty.washington.edu/jht/GS559_2012/

Genome 559: Introduction to Statistical and Computational Genomics
Prof. James H. Thomas
Review

- How to compute and use a score matrix.
- log-odds of sum-of-pair counts vs. expected counts.
- Why gap scores should be affine.
Are these proteins related?

SEQ 1: RVVNLVPS--FWVLDATYKNYAINYNCDVTRYKL
 LP L Y N Y C L
SEQ 2: QFFPLMPPAPYPILATDAENLPLVYSCTFFWLF

SEQ 1: RVVNLVPS--FWVLDATYKNYAINYNCDVTRYKL
 LP W LDATYKNYA Y C L
SEQ 2: QFFPLMPPAPYWILDATYKNYALVYSCTFFWLF

SEQ 1: RVVNLVPS--FWVLDATYKNYAINYNCDVTRYKL
 RVV L PS W LDATYKNYA Y CDVTRYKL
SEQ 2: RVVPLMPSAPYWILDATYKNYALVYSCDVTRYKL

(intuitive answers)

NO (score = -1)

PROBABLY (score = 15)

YES (score = 24)
Significance of scores

Alignment algorithm

HPDKKAHSHIHAWILSKSKVLEGNTKEVVDNVLKT

LENENQGKCTIAEYKYGKASVYNFVSNGVKE

45

Low score = unrelated
High score = related

How high is high enough?
The null hypothesis

• We want to characterize the distribution of scores from pairwise sequence alignments.
• We measure how surprising a given score is, assuming that the two sequences are not related.
• This assumption is called the null hypothesis.
• The purpose of most statistical tests is to determine whether the observed result provides a reason to reject the null hypothesis.
Sequence similarity score distribution

- Search a randomly generated database of sequences using a given query sequence.
- What will be the form of the resulting distribution of pairwise alignment scores?
Empirical score distribution

- This shows the distribution of scores from a real database search using BLAST.
- This distribution contains scores from a few related and lots of unrelated pairs.

(note - there are lots of lower scoring alignments not reported)
Empirical null score distribution

- This distribution is similar to the previous one, but generated using a randomized sequence database (each sequence shuffled).

(note - there are lots of lower scoring alignments not reported)
Computing an empirical p-value

- The probability of observing a score $\geq X$ is the area under the curve to the right of X.
- This probability is called a p-value.
- p-value = $\Pr(\text{data}|\text{null})$
 (read as probability of data given a null hypothesis)

e.g. out of 1,685 scores, 28 received a score of 20 or better. Thus, the p-value associated with a score of 20 is approximately $28/1685 = 0.0166$.
Problems with empirical distributions

• We are interested in very small probabilities.
• These are computed from the tail of the null distribution.
• Estimating a distribution with an accurate tail is feasible but computationally very expensive because we have to make a very large number of alignments.
A solution

- Solution: Characterize the form of the score distribution mathematically.
- Fit the parameters of the distribution empirically, or compute them analytically.
- Use the resulting distribution to compute accurate p-values.
- First solved by Karlin and Altschul.
Extreme value distribution

This distribution is roughly normal near the peak, but characterized by a larger tail on the right.
Computing a p-value

- The probability of observing a score ≥ 4 is the area under the curve to the right of 4.
- p-value $= \Pr(\text{data} | \text{null})$
Unscaled EVD equation

\[P \ S \geq x = 1 - e^{-e^{-x}} \]

S is data score, x is test score

Compute this value for x=4.
Computing a p-value

\[P \ S \geq 4 = 1 - e^{(-e^{-4})} \]

\[P(S \geq 4) = 0.018149 \]