
loops continued and coding
efficiently

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

Review

x += y # adds y to the value of x

x *= y # multiplies x by the value y

x -= y # subtracts y from the value of x

Increment operator

sys.exit() # exit program immediately

Explicit program exit

Use to terminate when something is wrong - best to use
print to provide user feedback before exit

Smart loop use

• if you don't know how many times you want to loop,
use a while loop (indeterminate).

• e.g. finding all matches in a sequence

• e.g. looping through a list until you reach some list
value

lastVal = "Gotterdammerung"

i = 0

while i < len(someList) and someList[i] != lastVal:

<do something with someList[i]>

i += 1

if i == len(someList):

print lastVal, "not found"

print "World not ended yet"

Smart loop use

Read a file and print the first ten lines

import sys

infile = open(sys.argv[1], "r")

lineList = infile.readlines()

counter = 0

for line in lineList:

counter += 1

if (counter > 10):

break

print line

infile.close()

Does this work?

YES

NO

Is it good code?

What if the file has a million lines? (not uncommon in bioinformatics)

import sys

infile = open(sys.argv[1], "r")

lineList = infile.readlines()

counter = 0

for line in lineList:

counter += 1

if (counter > 10):

break

print line

infile.close()

this statement reads
all million lines!!

import sys

infile = open(sys.argv[1], "r")

for counter in range(10):

print infile.readline()

infile.close()

How about this instead?

this version reads only
the first ten lines, one

at a time

import sys

infile = open(sys.argv[1], "r")

counter = 0

while counter < 10:

print infile.readline()

counter += 1

infile.close()

This while loop does the same thing:

• The original readlines() approach not only takes much longer
on large files it also has to store ALL the data in memory.

• I ran original version and efficient version on a very large file.

• Original version ran for 45 seconds and crashed when it ran out
of memory.

• Improved version ran successfully in << 1 sec.

What if the file has fewer than ten lines?
import sys

infile = open(sys.argv[1], "r")

for counter in range(10):

print infile.readline()

infile.close()

It prints blank lines repeatedly - not ideal

hint - when readline() reaches the end of a file, it returns ""
but a blank line in the middle of a file returns "/n"

import sys

infile = open(sys.argv[1], "r")

for counter in range(10):

line = infile.readline()

if len(line) == 0:

break

print line

infile.close()

Improved version:

test for end of file

Memory allocation efficiency
index = 0

curIndex = 0

while True:

curIndex = hugeString[index:].find(query)

if curIndex == -1:

break

index += curIndex

print index

index += 1 # move past last match

First version makes a NEW large string in memory every time
through the loop - slow!

Second version uses the same string every time but starts search at
different points in memory. Ran 10x to 1000x faster in test searches.

index = 0

while True:

index = hugeString.find(query, index)

if index == -1:

break

print index

index += 1 # move past last match

be wary if you
are splitting
strings a lot

….
hugeString in memory

search 1

….
…

hugeString in memory

search 1
search 2

search 3
search 4

hugeString.find(queryString, index)

To figure out where to start this search, the computer just adds
index to the position in memory of the 0th byte of hugeString and
starts the search there.

….

new hugeString in memory

copy bytes

search 2
etc.

hugeString[index:]

Sequential splitting of file contents

Many problems in text or sequence parsing can employ this strategy:

• First, split file content into chunks (lines or fasta sequences
etc.)

• Second, from each chunk extract the needed data

• This can be repeated - split each chunk into subchunks, extract
needed data from subchunks.

import sys

lineList = open(sys.argv[1], "r").readlines()

for line in lineList:

fieldList = line.strip().split("\t")

for field in fieldList:

<do something with field>

How many levels of splitting does this do? 2

General points for improving your code

• Write compactly as long as it is clear to read

• Consider whether you do things that are unnecessary
(e.g. reading all the lines in a file when you don't need to)

• Consider user feedback if something unexpected arises
(we will learn how to do this more elegantly soon).

• Don't waste memory by keeping information you don't
need to use.

Sample problem #1

Write a program read-N-lines.py that prints the first N lines
from a file (or all lines if the file has fewer than N lines), where
N is the first argument and filename is the second argument. Be
sure it handles very short and very long files correctly and
efficiently.

>python read-N-lines.py 7 file.txt

this

file

has

five

lines

>

Solution #1

import sys

infile = open(sys.argv[2], "r")

max = int(sys.argv[1])

counter = 0

while counter < max:

line = infile.readline()

if len(line) == 0: # we reached end of file

break

print line.strip()

counter += 1

Sample problem #2

Write a program find-match.py that prints all the lines from
the file cf_repmask.txt (linked from the web site) in which the
11th text field exactly matches "CfERV1", with the number of lines
matched and the total number of file lines at the end. Make the
file name, the search term, and the field number command-line
arguments.

The file is an annotation of all the repeat sequences known in the
dog genome. It is ~4.5 million lines long. Each line has 17 tab-
delimited text fields.

You will know you got it right if the example match count is 1,168.

(If you use the smaller file cfam_repmask2.txt, the count should
be 184)

Your program should run in about 10-20 seconds.

import sys

if (len(sys.argv) != 4):

print("USAGE: three arguments expected")

sys.exit()

query = sys.argv[1] # get the search term

fnum = int(sys.argv[2]) - 1 # get the field number

hitCount = 0 # initialize hit and line counts

lineCount = 0

f = open(sys.argv[3]) # open the file

for line in f: # for each line in file

lineCount += 1

fields = line.split('\t')

if fields[fnum] == query: # test for match

print line.strip()

hitCount += 1

f.close()

print hitCount, "matches,", lineCount, "lines"

Solution #2

Remark - in Solution #2 it is a bad idea to read all the
lines at once with f.readlines().

Even though the problem requires you to read every
line in the file, the best solution uses minimal memory
because it never stores more than one line at a time.

Challenge problem 1

Extend sample problem 2 so that there is an optional
4th argument that specifies a minimum genomic length
to report a match.

In the file, fields 7 and 8 are integers that indicate
the genomic start and end positions of the repeat
sequence.

You should get 341 matches for the query "CfERV1"
and a minimum genomic length of 1000. (If you use the
smaller file cfam_repmask2.txt, there should be 63
matches)

import sys

if (len(sys.argv) < 4):

print("USAGE: at least three arguments expected")

sys.exit()

query = sys.argv[1]

fnum = int(sys.argv[2]) - 1

minSpan = 0 # set a default so that any match passes

if len(sys.argv) == 5:

minSpan = int(sys.argv[4])

hitCount = 0

lineCount = 0

f = open(sys.argv[3])

for line in f:

lineCount += 1

fields = line.split('\t')

if fields[fnum] == query:

span = int(fields[7]) - int(fields[6])

if span >= minSpan:

print line.strip()

hitCount += 1

f.close()

print hitCount, "matches,", lineCount, "lines"

Solution to challenge problem 1

Challenge problem 2

Modify sample problem 2 so that the number of
matches and number of lines prints BEFORE the
specific matches.

import sys

if (len(sys.argv) != 4):

print("USAGE: three arguments expected")

sys.exit()

query = sys.argv[1]

fnum = int(sys.argv[2]) - 1

lineCount = 0

matchLines = [] # initialize the list to hold match lines

f = open(sys.argv[3])

for line in f:

lineCount += 1

fields = line.split('\t')

if fields[fnum] == query:

matchLines.append(line.strip()) # put line in list

f.close()

print len(matchLines), "matches,", lineCount, "lines"

for line in matchLines:

print line

The trick is simple - make a list that will hold the matched lines,
rather than printing them as you go. Print the list at the end.

(note also that matchLines implicitly gives the number of matched lines)

One possible problem is that, if the number of matched lines is huge, you could
run out of memory.

