Project Design

Genome 559: Introduction to Statistical and Computational Genomics

Elhanan Borenstein

Hypothesis:

The average degree in the metabolic networks of Prokaryotes is higher than the average degree in the metabolic networks of Eukaryotes

KEGG	-	Search	Help
IVE-OO		ocarer,	LICIP

» Japanese

KEGG Home

Release notes Current statistics Plea from KEGG

KEGG Database

KEGG overview Searching KEGG KEGG mapping Color codes

KEGG Objects

Pathway maps Brite hierarchies

KEGG Software

KegTools KEGG API KGML

KEGG FTP Subscription

GenomeNet

DBGET/LinkDB

Feedback

Kanehisa Labs

KEGG: Kyoto Encyclopedia of Genes and Genomes

KEGG is a database resource for understanding high-level functions and utilities of the biological system, such as the cell, the organism and the ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies (See Release notes for new and updated features).

Main entry point to the KEGG web service

KEGG2 KEGG Table of Contents Update notes

Data-oriented entry points

 KEGG PATHWAY
 KEGG pathway maps [Pathway list]

 KEGG BRITE
 BRITE functional hierarchies [Brite list]

KEGG MODULE KEGG modules [Module list]

KEGG DISEASE Human diseases [Cancer | Infectious disease]

KEGG DRUG Drugs [ATC drug classification]
KEGG ORTHOLOGY Ortholog groups [KO system]
KEGG GENOME Genomes [KEGG organisms]

KEGG GENES Genes and proteins Release history
KEGG LIGAND Chemical information [Reaction modules]

Entry point for wider society

KEGG MEDICUS Health-related information resource

Organism-specific entry points

KEGG Organisms Enter org code(s) Go hsa hsa eco

Analysis tools

KEGG Mapper KEGG PATHWAY/BRITE/MODULE mapping tools **KEGG Atlas** Navigation tool to explore KEGG global maps

KAAS KEGG automatic annotation server

BLAST/FASTA Sequence similarity search

SIMCOMP Chemical structure similarity search

PathPred Biodegradation/biosynthesis pathway prediction

Go Clear

KEGG Home

Introduction Overview Release notes Current statistics

KEGG Identifiers

Pathway maps Brite hierarchies

KEGG XML

KEGG APT

KEGG FTP

KegTools

GenomeNet

DBGET/LinkDB

Feedback

KEGG FTP

KEGG FTP Site for Academic Users

The KEGG data may be downloaded by academic users from the KEGG FTP site:

ftp://ftp.genome.jp/pub/kegg/

Non-academic users are required to obtain a license agreement for downloading KEGG.

- · Terms of use
- · Licensing from Pathway Solutions

Announcement:

A new directory, "module", is created.

Posted on December 22, 2010 » Past announcements

Directories and Files

pathway/ KEGG PATHWAY (daily updated) Reference pathway maps map/ Reference pathway maps (KO) ko/ Reference pathway maps (EC) ec/ Reference pathway maps (reaction) rn/ Organism-specific pathway maps organisms/ Pathway entries (text data) pathway map_title.tab List of pathways available

module/ KEGG MODULE (daily updated) New!

ko/ Reference module maps (KO) - to be added organisms/ Organism-specific module maps - to be added

module Module entries (text data)

genome.txt

```
ENTRY
           T00001
                             Complete Genome
           hin, H.influenzae, HAEIN, 71421
NAME
DEFINITION Haemophilus influenzae Rd KW20 (serotype d)
ANNOTATION manual
TAXONOMY
          TAX:71421
 LINEAGE Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales;
           Pasteurellaceae; Haemophilus
DATA SOURCE RefSeq
ORIGINAL DB JCVI-CMR
           Meningitis, septicemia, otitis media, sinusitis and chronic
DISEASE
           bronchitis
CHROMOSOME Circular
 SEQUENCE RS:NC 000907
 LENGTH
          1830138
STATISTICS Number of nucleotides: 1830138
           Number of protein genes:
                                          1657
           Number of RNA genes:
                                             81
REFERENCE PMID: 7542800
 AUTHORS Fleischmann RD, et al.
           Whole-genome random sequencing and assembly of Haemophilus
  TITLE
           influenzae Rd.
 JOURNAL Science 269:496-512 (1995)
111
ENTRY
           T00002
                             Complete Genome
           mge, M.genitalium, MYCGE, 243273
NAME
DEFINITION Mycoplasma genitalium G-37
ANNOTATION manual
TAXONOMY
          TAX:243273
 LINEAGE Bacteria; Tenericutes; Mollicutes; Mycoplasmataceae; Mycoplasma
```

hin_ko.txt

```
ko:K02313
ace:Acel 0001
ace:Acel 0002
                   ko:K02338
ace:Acel 0003
                   ko:K03629
ace:Acel 0005
                   ko:K02470
                   ko:K02469
ace:Acel 0006
ace:Acel 0012
                   ko:K03767
ace:Acel 0018
                   ko:K01664
                   ko:K08884
ace:Acel 0019
ace:Acel 0020
                   ko:K05364
ace:Acel 0026
                   ko:K01552
ace:Acel 0029
                   ko:K00111
ace:Acel 0031
                   ko:K00627
ace:Acel 0032
                   ko:K00162
ace:Acel 0033
                   ko:K00161
ace:Acel 0035
                   ko:K00817
ace:Acel 0036
                   ko:K07448
ace:Acel 0039
                   ko: K04750
ace:Acel 0041
                   ko:K03281
ace:Acel 0048
                   ko:K08323
                   ko:K03734
ace:Acel 0051
ace:Acel 0052
                   ko:K03147
ace:Acel 0057
                   ko:K03088
ace:Acel 0059
                   ko:K01010
                   ko:K03711
ace:Acel 0061
ace:Acel 0062
                   ko:K06980
ace:Acel 0063
                   ko:K07560
ace:Acel 0072
                   ko:K12373
ace:Acel 0075
                   ko:K01834
ace:Acel 0076
                   ko:K09796
```

ko.txt

```
ENTRY
            K00001
                                        KO
            E1.1.1.1, adh
NAME
DEFINITION alcohol dehydrogenase [EC:1.1.1.1]
            ko00010 Glycolysis / Gluconeogenesis
PATHWAY
            ko00071 Fatty acid metabolism
            M00236 Retinol biosynthesis, beta-cacrotene => retinol
MODULE
CLASS
            Metabolism; Carbohydrate Metabolism; Glycolysis / Gluconeogenesis
            [PATH: ko000101
            Metabolism; Lipid Metabolism; Fatty acid metabolism [PATH:ko00071]
            Metabolism; Amino Acid Metabolism; Tyrosine metabolism
            [PATH: ko003501
            Metabolism: Metabolism of Cofactors and Vitamins: Retinol metabolism
DBLINKS
            RN: R00623 R00754 R02124 R04805 R04880 R05233 R05234 R06917 R06927
                R07105 R08281 R08306 R08310
            COG: COG1012 COG1062 COG1064 COG1454
            GO: 0004022 0004023 0004024 0004025
            HSA: 124 (ADH1A) 125 (ADH1B) 126 (ADH1C) 127 (ADH4) 130 (ADH6) 131 (ADH7)
GENES
            PTR: 461394 (ADH4) 461395 (ADH6) 461396 (ADH1B) 471257 (ADH7)
                 744064 (ADH1A) 744176 (ADH1C)
            MCC: 707367 707682 (ADH1A) 708520 711061 (ADH1C)
            PAS: Pars 0396 Pars 0534 Pars 0547 Pars 1545 Pars 2114
            TPE: Tpen 1006 Tpen 1516
111
ENTRY
            K00002
                                        KO
NAME
            E1.1.1.2, adh
DEFINITION alcohol dehydrogenase (NADP+) [EC:1.1.1.2]
PATHWAY
            ko00010 Glycolysis / Gluconeogenesis
            ko00561 Glycerolipid metabolism
```

reaction.txt

```
R00005: 00330: C01010 => C00011
R00005: 00791: C01010 => C00011
R00005: 01100: C01010 <=> C00011
R00006: 00770: C00022 \Rightarrow C00900
R00008: 00362: C06033 \Rightarrow C00022
R00008: 00660: C00022 \Rightarrow C06033
R00010: 00500: C01083 => C00031
R00013: 00630: C00048 => C01146
R00013: 01100: C00048 <=> C01146
R00014: 00010: C00022 + C00068 => C05125
R00014: 00020: C00068 + C00022 => C05125
R00014: 00290: C00022 => C05125
R00014: 00620: C00068 + C00022 => C05125
R00014: 00650: C00068 + C00022 => C05125
R00014: 01100: C00022 <=> C05125
R00018: 00960: C00134 \Rightarrow C06366
R00019: 00630: C00080 => C00282
R00019: 00680: C00080 \Rightarrow C00282
R00021: 00910: C00025 <= C00064
R00022: 00520: C01674 \Rightarrow C00140
. . .
```

From Small Scripts to Full Projects

- Use a top-down approach
- Divide and conquer

Designing with Pseudo-Code Comments

```
Preprocessing
```

```
# Build networks and calc degree
```

Add details

```
# Preprocessing
# =========
# Read and store mapping from KO to RN
# Read and store mapping from RN to edges
# Read and store species list and lineages
```

```
# Build networks and calc degree
# Loop over species
    # Read KO list of current species
    # Map KO to RN and RN to edges
    # Calculate degree
    # Store: species, degree, phyla
# Print output
# Calculated average degree per P and per E
```

Add notes to self

```
# Preprocessing
# =========
# Read and store mapping from KO to RN
# Read and store mapping from RN to edges
# Read and store species list and lineages
```

```
# Build networks and calc degree
# Loop over species
    # Read KO list of current species
    # Map KO to RN and RN to edges
    # -> Here I should have a full network
    # -> TBD: What data structure should I use?
    # Calculate degree
    # Store: species, degree, phyla
    # -> TBD: How do I store results?
# Print output
# Calculated average degree per P and per E
```

Add variables, loops, if-s, function calls

```
# Preprocessing
# =========
# Read and store mapping from KO to RN
KO file = 'ko.txt'
KO to RN = {}
# Read and store mapping from RN to edges
RN file = 'reaction.txt'
RN to EDGES = \{\}
# Read and store species list and lineages
Genomes file = 'genome.txt'
species list = []
species lineage = {}
```

```
# Build networks and calc degree
# Loop over species
for species in species list:
    # Read KO list of current species
    # Map KO to RN and RN to edges
    # -> Here I should have a full network
    # -> TBD: What data structure should I use?
    # Calculate degree
    degree = CalcDegree(network)
    # Store: species, degree, phyla
    # -> TBD: How do I store results?
# Print output
# Calculated average degree per P and per E
# Print
```

Start coding small chunks

```
# Preprocessing
# =========
# Read and store mapping from KO to RN
KO file = 'ko.txt'
KO to RN = \{\}
# Read and store mapping from RN to edges
RN file = 'reaction.txt'
RN to EDGES = \{\}
# Read and store species list and lineages
Genomes file = 'genome.txt'
species list = []
species lineage = {}
< LET'S WRITE THIS PART >
```

```
# Build networks and calc degree
# Loop over species
for species in species list:
    # Read KO list of current species
    # Map KO to RN and RN to edges
    # -> Here I should have a full network
    # -> TBD: What data structure should I use?
    # Calculate degree
    degree = CalcDegree(network)
    # Store: species, degree, phyla
    # -> TBD: How do I store results?
# Print output
# Calculated average degree per P and per E
# Print
```

Final Exam

Two parts:

- The first will focus on the bioinformatics topics covered in class.
- The second on programming.
- Both parts will comprise very simple and brief questions to account for the short time allowed for the exam.
- Open books (basically, any static resource you want is ok).

Common Mistakes: Parsimony

Figure out how many possible Nearest-Neighbor Interchanges there are on a specific unrooted tree with 8 leaves (that is, the number of competing trees that would be considered in one step of the hill-climbing method using NNIs). Hint: a subtree can be any part of the tree, including a single leaf. Justify your answer.

Common Mistakes: Programming

- Comments !!!
- continue, elif, if ...

```
for items in list:
    if (...):
        do_something
    else:
        continue
```

```
if (a > 10):
    do_nothing
else:
    print ...
```

Lists vs. Dictionaries

... it's a wrap ... Hope you enjoyed!