
Genome 559: Introduction to Statistical and
Computational Genomics

Elhanan Borenstein

Project Design

Hypothesis:
The average degree in the metabolic networks

of Prokaryotes is higher than the average degree
in the metabolic networks of Eukaryotes

genome.txt
ENTRY T00001 Complete Genome

NAME hin, H.influenzae, HAEIN, 71421

DEFINITION Haemophilus influenzae Rd KW20 (serotype d)

ANNOTATION manual

TAXONOMY TAX:71421

 LINEAGE Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales;

 Pasteurellaceae; Haemophilus

DATA_SOURCE RefSeq

ORIGINAL_DB JCVI-CMR

DISEASE Meningitis, septicemia, otitis media, sinusitis and chronic

 bronchitis

CHROMOSOME Circular

 SEQUENCE RS:NC_000907

 LENGTH 1830138

STATISTICS Number of nucleotides: 1830138

 Number of protein genes: 1657

 Number of RNA genes: 81

REFERENCE PMID:7542800

 AUTHORS Fleischmann RD, et al.

 TITLE Whole-genome random sequencing and assembly of Haemophilus

 influenzae Rd.

 JOURNAL Science 269:496-512 (1995)

///

ENTRY T00002 Complete Genome

NAME mge, M.genitalium, MYCGE, 243273

DEFINITION Mycoplasma genitalium G-37

ANNOTATION manual

TAXONOMY TAX:243273

 LINEAGE Bacteria; Tenericutes; Mollicutes; Mycoplasmataceae; Mycoplasma

...

hin_ko.txt
ace:Acel_0001 ko:K02313

ace:Acel_0002 ko:K02338

ace:Acel_0003 ko:K03629

ace:Acel_0005 ko:K02470

ace:Acel_0006 ko:K02469

ace:Acel_0012 ko:K03767

ace:Acel_0018 ko:K01664

ace:Acel_0019 ko:K08884

ace:Acel_0020 ko:K05364

ace:Acel_0026 ko:K01552

ace:Acel_0029 ko:K00111

ace:Acel_0031 ko:K00627

ace:Acel_0032 ko:K00162

ace:Acel_0033 ko:K00161

ace:Acel_0035 ko:K00817

ace:Acel_0036 ko:K07448

ace:Acel_0039 ko:K04750

ace:Acel_0041 ko:K03281

ace:Acel_0048 ko:K08323

ace:Acel_0051 ko:K03734

ace:Acel_0052 ko:K03147

ace:Acel_0057 ko:K03088

ace:Acel_0059 ko:K01010

ace:Acel_0061 ko:K03711

ace:Acel_0062 ko:K06980

ace:Acel_0063 ko:K07560

ace:Acel_0072 ko:K12373

ace:Acel_0075 ko:K01834

ace:Acel_0076 ko:K09796

...

ko.txt
ENTRY K00001 KO

NAME E1.1.1.1, adh

DEFINITION alcohol dehydrogenase [EC:1.1.1.1]

PATHWAY ko00010 Glycolysis / Gluconeogenesis

 ko00071 Fatty acid metabolism

MODULE M00236 Retinol biosynthesis, beta-cacrotene => retinol

CLASS Metabolism; Carbohydrate Metabolism; Glycolysis / Gluconeogenesis

 [PATH:ko00010]

 Metabolism; Lipid Metabolism; Fatty acid metabolism [PATH:ko00071]

 Metabolism; Amino Acid Metabolism; Tyrosine metabolism

 [PATH:ko00350]

 Metabolism; Metabolism of Cofactors and Vitamins; Retinol metabolism

DBLINKS RN: R00623 R00754 R02124 R04805 R04880 R05233 R05234 R06917 R06927

 R07105 R08281 R08306 R08310

 COG: COG1012 COG1062 COG1064 COG1454

 GO: 0004022 0004023 0004024 0004025

GENES HSA: 124(ADH1A) 125(ADH1B) 126(ADH1C) 127(ADH4) 130(ADH6) 131(ADH7)

 PTR: 461394(ADH4) 461395(ADH6) 461396(ADH1B) 471257(ADH7)

 744064(ADH1A) 744176(ADH1C)

 MCC: 707367 707682(ADH1A) 708520 711061(ADH1C)

...

 PAS: Pars_0396 Pars_0534 Pars_0547 Pars_1545 Pars_2114

 TPE: Tpen_1006 Tpen_1516

///

ENTRY K00002 KO

NAME E1.1.1.2, adh

DEFINITION alcohol dehydrogenase (NADP+) [EC:1.1.1.2]

PATHWAY ko00010 Glycolysis / Gluconeogenesis

 ko00561 Glycerolipid metabolism

...

reaction.txt
R00005: 00330: C01010 => C00011

R00005: 00791: C01010 => C00011

R00005: 01100: C01010 <=> C00011

R00006: 00770: C00022 => C00900

R00008: 00362: C06033 => C00022

R00008: 00660: C00022 => C06033

R00010: 00500: C01083 => C00031

R00013: 00630: C00048 => C01146

R00013: 01100: C00048 <=> C01146

R00014: 00010: C00022 + C00068 => C05125

R00014: 00020: C00068 + C00022 => C05125

R00014: 00290: C00022 => C05125

R00014: 00620: C00068 + C00022 => C05125

R00014: 00650: C00068 + C00022 => C05125

R00014: 01100: C00022 <=> C05125

R00018: 00960: C00134 => C06366

R00019: 00630: C00080 => C00282

R00019: 00680: C00080 => C00282

R00021: 00910: C00025 <= C00064

R00022: 00520: C01674 => C00140

...

From Small Scripts to Full Projects

 Use a top-down approach

 Divide and conquer

Preprocessing

=============

Build networks and calc degree

==============================

Print output

============

Designing with
Pseudo-Code

Comments

Preprocessing

=============

Read and store mapping from KO to RN

Read and store mapping from RN to edges

Read and store species list and lineages

Build networks and calc degree

==============================

Loop over species

 # Read KO list of current species

 # Map KO to RN and RN to edges

 # Calculate degree

 # Store: species, degree, phyla

Print output

============

Calculated average degree per P and per E

Print

Add details

Preprocessing

=============

Read and store mapping from KO to RN

Read and store mapping from RN to edges

Read and store species list and lineages

Build networks and calc degree

==============================

Loop over species

 # Read KO list of current species

 # Map KO to RN and RN to edges

 # -> Here I should have a full network

 # -> TBD: What data structure should I use?

 # Calculate degree

 # Store: species, degree, phyla

 # -> TBD: How do I store results?

Print output

============

Calculated average degree per P and per E

Print

Add notes to self

Preprocessing

=============

Read and store mapping from KO to RN

KO_file = ‘ko.txt’

KO_to_RN = {}

Read and store mapping from RN to edges

RN_file = ‘reaction.txt’

RN_to_EDGES = {}

Read and store species list and lineages

Genomes_file = ‘genome.txt’

species_list = []

species_lineage = {}

Build networks and calc degree

==============================

Loop over species

for species in species_list:

 # Read KO list of current species

 # Map KO to RN and RN to edges

 # -> Here I should have a full network

 # -> TBD: What data structure should I use?

 # Calculate degree

 degree = CalcDegree(network)

 # Store: species, degree, phyla

 # -> TBD: How do I store results?

Print output

============

Calculated average degree per P and per E

Print

Add variables, loops,
if-s, function calls

Preprocessing

=============

Read and store mapping from KO to RN

KO_file = ‘ko.txt’

KO_to_RN = {}

Read and store mapping from RN to edges

RN_file = ‘reaction.txt’

RN_to_EDGES = {}

Read and store species list and lineages

Genomes_file = ‘genome.txt’

species_list = []

species_lineage = {}

< LET’S WRITE THIS PART >

Build networks and calc degree

==============================

Loop over species

for species in species_list:

 # Read KO list of current species

 # Map KO to RN and RN to edges

 # -> Here I should have a full network

 # -> TBD: What data structure should I use?

 # Calculate degree

 degree = CalcDegree(network)

 # Store: species, degree, phyla

 # -> TBD: How do I store results?

Print output

============

Calculated average degree per P and per E

Print

Start coding small
chunks

Final Exam
 Two parts:

 The first will focus on the bioinformatics topics covered in
class.

 The second on programming.

 Both parts will comprise very simple and brief
questions to account for the short time allowed for the
exam.

 Open books (basically, any static resource you want is
ok).

Common Mistakes: Parsimony
 Figure out how many possible Nearest-Neighbor

Interchanges there are on a specific unrooted tree with
8 leaves (that is, the number of competing trees that
would be considered in one step of the hill-climbing
method using NNIs). Hint: a subtree can be any part of
the tree, including a single leaf. Justify your answer.

Common Mistakes: Programming
 Comments !!!

 continue, elif, if …

 Lists vs. Dictionaries

for items in list:

 if (…):

 do_something

 else:

 continue

if (a > 10):

 do_nothing

else:

 print …

… it’s a wrap …
Hope you enjoyed!

