Sequence comparison: Significance of alignment scores

http://faculty.washington.edu/jht/GS559_2014/

Genome 559: Introduction to Statistical and Computational Genomics
Prof. James H. Thomas
Unscaled EVD equation

\[P(S \geq x) = 1 - e^{(-e^{-x})} \]

S is data score, x is test score

(FYI this is 1 minus the cumulative density function or CDF)
Scaling the EVD

- An EVD derived from, e.g., the Smith-Waterman algorithm with a given substitution matrix and gap penalties has a characteristic mode μ and scale (width) parameter λ.

\[
P(S \geq x) = 1 - e^{-e^{-x}} \quad \text{scaled:} \quad P(S \geq x) = 1 - e^{-e^{-\lambda(x-\mu)}}
\]

λ and μ depend on the substitution matrix and the gap penalties.
Similar to scaling the standard normal

\[PDF_{\text{snormal}} = Ce^{-x^2/2} \]

where \(C = 1/\sqrt{2\pi} \)

\[PDF_{\text{gnormal}} = Ce^{-(x-\mu)^2/2\nu} \]

where \(C = 1/\sqrt{2\pi\nu} \)

\(\nu \) is variance, \(\mu \) is mean

PDF = probability density function

(\(\mu \) moves peak and \(\nu \) adjusts width)
An example

You run BLAST and get a maximum match score of 45. You then run BLAST on a shuffled version of the database, and fit an EVD to the resulting empirical distribution. The parameters of the EVD are $\mu = 25$ and $\lambda = 0.693$. What is the p-value associated with score 45?

$$P(S \geq 45) = 1 - e^{(-e^{-0.693(45-25)})}$$

$$= 1 - e^{(-e^{-13.86})}$$

$$= 1 - e^{-9.565 \times 10^{-7}}$$

$$= 1 - 0.9999999043$$

$$= 9.565 \times 10^{-7}$$

BLAST has precomputed values of μ and λ for common matrices and gap penalties.
What p-value is significant?

• The most common thresholds are 0.01 and 0.05.
• A threshold of 0.05 means you are 95% sure that the result is significant.
• Is 95% enough? It depends upon the cost associated with making a mistake.
• Examples of costs:
 - Doing extensive wet lab validation (expensive)
 - Making clinical treatment decisions (very expensive)
 - Misleading the scientific community (very expensive)
 - Doing further simple computational tests (cheap)
 - Telling your grandmother (very cheap)
Multiple testing

- Say that you perform a statistical test with a 0.05 threshold, but you repeat the test on twenty different observations (e.g. 20 different blast runs).

- Assume that all of the observations are explainable by the null hypothesis.

- What is the chance that at least one of the observations will receive a p-value of 0.05 or less?

\[1 - 0.95^{20} = 0.6415 \]
Bonferroni correction

• Assume that individual tests are *independent*.

• Multiply the p-values by the number of tests performed.
Database searching

- Say that you search the non-redundant protein database at NCBI, containing roughly one million sequences (i.e. you are doing 10^6 pairwise tests). What p-value threshold should you use?

- Say that you want to use a conservative p-value of 0.001.

- Recall that you would observe such a p-value by chance approximately every 1000 times in a random database.
E-values

• A p-value is the probability of making a mistake.
• An E-value is the expected number of times that the given score would appear in a random database of the given size.
• One simple way to compute the E-value is to multiply the p-value by the number of sequences in the database.
• Thus, for a p-value of 0.001 and a database of 1,000,000 sequences, the corresponding E-value is 0.001 × 1,000,000 = 1,000.

(BLAST actually calculates E-values in a different way, but they mean about the same thing)
>104K_THEPA 104 KD MICRONEME-RHOPTRY ANTIGEN
MKFLILLFNILCLFPVLADNHGVGPQGASGVDPTTFDNSNQTGPAFLTAEMAGVKYLQ
HRLVEGNVVIWENASTPLYTGATIVTNNDGPYMAVEVLDGDPLQLFFIKSGDAWVTLEHEY
AVHIESVFSLNMAFQLLENKKYEVEATHAKNGANMVTFIPRNGHIKCMVYHKNVRITYKATGD
RGLRLLLINVFSIDDNGMMSNRYFQHVDDKYVPISQKNYESGTIVKLKDHYKHAYHPVDLDIK
Sequences producing significant alignments:

gi[112670]	sp	P15711	104K_THEPA	104 KD MICRONEME-RHOPTRY ANT...	1352	0.0
gi[14268530]	gb	AAK56556.1	104 kDa microneme-rhoptry antige...	243	1e-62	
gi[14268528]	gb	AAK56555.1	104 kDa microneme-rhoptry antige...	242	4e-62	
gi[14268526]	gb	AAK56554.1	104 kDa microneme-rhoptry antige...	238	7e-62	
gi[3210185]	ref	XP_314059.1	ENSANGP00000015608 [Anopheles ...	37	2.1	
gi[22971724]	ref	ZP_00018655.1	hypothetical protein [Chloro...	35	9.7	
gi[32403566]	ref	XP_322396.1	hypothetical protein [Neurosp...	35	12	
gi[24639766]	ref	NP_572189.1	CG2861-PA [Drosophila melanoga...	34	17	
gi[30348569]	emb	CAC84361.1	hypothetical protein [Saimiriin...	34	19	
gi[6492132]	gb	AAFL14193.1	spherical body protein 3 [Babesia...	34	20	
gi[9629342]	ref	NP_044542.1	virion protein [Human herpesvir...	34	21	
gi[24639768]	ref	NP_726958.1	CG2861-PB [Drosophila melanoga...	34	21	
gi[4757118]	emb	CAB42096.1	TashAT2 protein [Theileria annul...	34	22	
gi[17534529]	ref	NP_495288.1	putative protein (2G676) [Caen...	33	22	
gi[15241089]	ref	NP_195809.1	leucine-rich repeat transmembr...	33	23	
gi[43489677]	gb	EAD99646.1	unknown [environmental sequence]	33	23	
gi[44419062]	gb	EAL13596.1	unknown [environmental sequence]	33	25	
gi[43969222]	gb	EAG14329.1	unknown [environmental sequence]	33	29	
gi[15792145]	ref	NP_281968.1	putative oxidoreductase [Campy...	33	34	
gi[43926327]	gb	EAG18073.1	unknown [environmental sequence]	33	37	
gi[39595869]	emb	CAE67372.1	Hypothetical protein CBG12848 [...	33	38	
gi[30020082]	ref	NP_831713.1	Glycosyltransferase [Bacillus ...	33	40	
gi[43723946]	gb	EAF16931.1	unknown [environmental sequence]	33	41	
gi[11545212]	gb	AAFL37800.1	hypothetical telomeric SfiI frag...	33	44	
gi[40788024]	emb	CAE47751.1	ubiquitin specific proteinine 5...	32	51	
gi[42656951]	ref	XP_052597.6	ubiquitin specific protease 53...	32	51	
gi[32698642]	ref	NP_872557.1	DNA-ligase [Adoxophyes orana g...	32	52	
gi[12840300]	dbj	BAB24814.1	unnamed protein product [Mus mu...	32	54	
gi[28899333]	ref	NP_798938.1	4-diphosphocytidyl-2C-methyl-D...	32	55	
gi[7243081]	dbj	BAA92588.1	KIAA1350 protein [Homo sapiens]	32	62	
Summary

• A **distribution** plots the frequencies of types of observation.
• The area under the distribution curve is 1.
• Most statistical tests compare observed data to the expected result according to a **null hypothesis**.
• Sequence alignment scores for unrelated sequences follow an **extreme value distribution**, which is characterized by a long tail.
• The **p-value** associated with a score is the area under the curve to the right of that score.
• Selecting a **significance threshold** requires evaluating the cost of making a mistake.
• **Bonferroni correction**: Multiply the p-value by the number of statistical tests performed.
• The **E-value** is the expected number of times that a given score would appear in a randomized database.