
Genome 559: Introduction to Statistical and
Computational Genomics

Elhanan Borenstein

Classes and Objects
Object Oriented Programming

A quick review

 Returning multiple values from a function
 return [sum, prod]

 Pass-by-reference vs. pass-by-value
 Python passes arguments by reference

 Can be used (carefully) to edit arguments “in-place”

 Default Arguments
 def printMulti(text, n=3):

 Keyword Arguments
 runBlast(“my_fasta.txt”, matrix=“PAM40”)

A quick review – cont’

 Modules:
 A module is a file containing a set of related functions

 Python has numerous standard modules

 It is easy to create and use your own modules:
 Just put your functions in a separate file

 To use a module, you first have
to import it:
 import utils

 Use the dot notation:
 utils.makeDict()

Classes and Objects

What is a class?

What is an object?

Why do we need them?

How do we use them?

How do we define new classes?

Classes
 A class defines the “type” of variables:

1. What kind of data is stored

2. What are the available functions

 Python includes (and you used) several built-in classes:

 String

 Dictionary

 Number

 Modules may provide additional classes …

What kind of data do
these “classes” store?

What kind of functions
do they provide?

Objects
 An object is an instance of a class:

 string is a class

 my_str = “AGGCGT” creates an object of the class
string, called my_str.

 You can only have one class named “string”

 But .. You can have many string objects
 my_str = “AGGCGT”

 your_str = “Jim Thomas”

Using objects
(surprise: you’ve been doing so all along)

>>> my_str = "ATCCGCG“

>>> your_str = “Jim Thomas”

>>> print my_str.find(“h")

6

>>> print your_str.count(“m")

2

Objects Object methods

This is useful …

But … why stop with built-in classes?

Wouldn’t it be great if we could have
many more classes?

Gene

Organism

PhyloTree Chair
Course

Student Person

DNA

Book GO Function

Genome

Date

This approach is known as

Object Oriented Programming
(OOP)

(P.S. not supported in all programming languages)

Why classes?
 Bundle together data and operations on data

 Keep related data together

 Keep functions connected to the data they work on

 Allow special operations appropriate to data

 “count” or “split” on a string;

 “square root” on numbers

 Allow context-specific meaning for common operations

 x = ‘a’; x*4 vs. x = 42; x*4

 Help organize your code and facilitates modular design

 Large programs aren’t just small programs on steroids

Why classes? The more profound answer

Why functions?

Allow to reuse your code
Help simplify & organize your code
Help to avoid duplication of code

Technical factor

Human approach to problem solving:
Divide the task into smaller tasks

Hierarchical and modular solution

Human factor

Why classes?

Bundle together data and operations
Allow context-specific operations

Help to organize your code

Technical factor

Human representation of the world:
Classify objects into categories

Each category/class is associated
with unique data/functions

Human factor

Defining our first new class
 As an example, let’s build a Date class

Defining our first new class
 As an example, let’s build a Date class

 The “dream” Date class should …

 store day, month, and year

 provide functions that print the date in
different formats

 provide functions to add or subtract a number
of days from the date

 provide a way to find the difference (in days)
between 2 dates

 check for errors:

 Setting month to “Jamuary”

 Copying the month without the associated day

 14 days after Feb 18 probably shouldn’t be Feb 32

Data
(members)

Functions
(methods)

A very, very simple Date class

class Date:

 day = 0

 month = "None"

Define the class Date

Create and initialize
class members

(not mandatory!!!)
Note the
Format

A very, very simple Date class

class Date:

 day = 0

 month = "None"

mydate = Date()

mydate.day = 15

mydate.month= "Jan"

print mydate

<__main__.Date instance at 0x1005380e0>

print mydate.day, mydate.month

15 Jan

yourdate = mydate

Define the class Date

Create and initialize
class members

(not mandatory!!!)

Create a new Date
object

(instance of the class Date)

Access and change
object members

Print object members

Copy the object into
another object

Note the
Format

Hmmm… a good start
 What do we have so far:

 Date data are bundled together (sort of …)

 Copying the whole thing at once is very handy

 Still on our wish-list:

 We still have to handle printing the various details

 Error checking - e.g., possible to forget to fill in the month

 No Date operations (add, subtract, etc.)

A slightly better Date class

mydate = Date()

mydate.day = 15

mydate.month= "Jan“

mydate.printUS()

Jan / 15

mydate.printUK()

15 . Jan

A slightly better Date class
class Date:

 day = 0

 month = "None"

 def printUS(self):

 print self.month , "/" , self.day

 def printUK(self):

 print self.day , "." , self.month

mydate = Date()

mydate.day = 15

mydate.month= "Jan"

mydate.printUS()

Jan / 15

mydate.printUK()

15 . Jan

cl
as

s
fu

n
ct

io
n

s
(m

e
th

o
d

s)

Call method
functions of this

Date object

Special name “self” refers to the
object in question (no matter

what the caller named it).

Where did the
argument go?

Answer to come .

We’re getting there …
 What do we have so far:

 Date data are bundled together (sort of …)

 Copying the whole thing at once is very handy

 Printing is easy and provided as a service by the class

 Still on our wish-list:

 We still have to handle printing the various details

 Error checking - e.g., possible to forget to fill in the month

 No Date operations (add, subtract, etc.)

class Date:

 day = 0

 month = "None"

mydate = Date()

mydate.day = 15

mydate.month= "Jan“

An even better Date class
class Date:

 def __init__(self, day, month):

 self.day = day

 self.month = month

 def printUS(self):

 print self.mon , "/" , self.day

 def printUK(self):

 print self.day , "." , self.mon

mydate = Date(15,"Jan")

mydate.printUS()

Jan / 15

mydate2 = Date(22,“Nov")

mydate2.printUK()

22 . Nov

Magical first arguments:
__init__ defined w/ 3 args; called w/ 2;
printUS defined w/ 1 arg; called w/ 0.

mydate passed in both cases as 1st arg, so each
function knows on which object it is to act

Special function “_ _init_ _” is called
whenever a Date object instance is

created. (class constructor)

It makes sure the object is
properly initialized

Now, when “constructing” a
new Date object, the caller
MUST supply required data

Dreams do come true (sometimes)
 What do we have so far:

 Date data are bundled together (sort of …)

 Copying the whole thing at once is very handy

 Printing is easy and provided as a service by the class

 User MUST provide data when generating a new Date
object

 Still on our wish-list:

 We still have to handle printing the various details

 Error checking - e.g., possible to forget to fill in the month

 No Date operations (add, subtract, etc.)

Class declarations and usage - Summary

 The class statement defines a new class

 Remember the colon and indentation

 The special name self means the current object

 self.<something> refers to instance variables of the class

 self is automatically passed to each method as a 1st argument

 The special name _ _init_ _ is the class constructor

 Called whenever a new instance of the class is created

 Every instance of the class will have all instance variables
defined in the constructor

 Use it well!

class <class_name>:

 <statements>

 <statements> …

TIP
OF THE

DAY
Code like a pro …

 Code running ≠ code is correct or bug-free

 Be much more concerned about the bugs you don’t
see than the ones you do!!

 Especially true in bioinformatics, high-throughput
data analysis, and simulations

"Testing shows the presence,
 not the absence of bugs."

Edsger Wybe Dijkstra
1930 –2002

Sample problem #1
 Add a year data member to the Date class:

1. Allow the class constructor to get an additional argument
denoting the year

2. If the year is not provided in the constructor, the class
should assume it is 2018
(Hint: remember the default value option in function definition)

3. When printing in US format, print all 4 digits of the year.
When printing in UK format, print only the last 2 digits.
(Hint: str(x) will convert an integer X into a string)

>>> mydate = Date(15,"Jan",1976)

>>> mydate.printUK()

15 . Jan . 76

>>> mydate = Date(21,"Feb")

>>> mydate.printUS()

Feb / 21 / 2018

class Date:

 def __init__(self, day, month, year=2018):

 self.day = day

 self.mon = month

 self.year = year

 def printUS(self):

 print self.mon , "/" , self.day , "/" , self.year

 def printUK(self):

 print self.day , "." , self.mon , "." , str(self.year)[2:]

Solution #1

Sample problem #2
 Change the Date class such that the month is

represented as a number rather than as a string.
(What did you have to do to make this change?)

 Add the function addMonths(n) to the class Date. This
function should add n months to the current date.
Make sure to correctly handle transitions across years.
(Hint: the modulo operator, %, returns the remainder in division: 8 % 32)

>>> mydate = Date(22, 11, 1976)

>>> mydate.printUK()

22 . 11 . 76

>>> mydate.addMonths(1)

>>> mydate.printUK()

22 . 12 . 76

>>> mydate.addMonths(3)

>>> mydate.printUK()

22 . 3 . 77

>>> mydate.addMonths(25)

>>> mydate.printUK()

22 . 4 . 79

class Date:

 def __init__(self, day, month, year=2018):

 self.day = day

 self.mon = month

 self.year = year

 def printUS(self):

 print self.mon , "/" , self.day , "/" , self.year

 def printUK(self):

 print self.day , "." , self.mon , "." , str(self.year)[2:]

 def addMonths(self, n=1):

 new_mon = self.mon + n

 self.year += (new_mon-1) / 12

 self.mon = (new_mon-1) % 12 + 1

Solution #2

Challenge Problem
1. Add the function addDays(n) to the class Date. This

function should add n days to the current date.
Make sure to correctly handle transitions across
months AND across years (when necessary). Take
into account the different number of days in each
month.

2. Revise the Date class such that it will again work
with the month’s name (rather than its number),
while preserving the functionality of the addMonths
and addDays functions.

