One Minute Responses

- Nucleotide vs. amino acid sequences

BLOSUM62 Score Matrix

	A	R	N	D	C	Q		E	G	H	I	L	K	M	F	P	S	T	W	Y	V	B	Z	X	
A	4	-1	-2	-2	0	-	1	-1	0	-2	-1	-1	-1	-1	-2	-1	1	0	-3	-2	0	-2	-1	0	-4
R	-1	5	0	-2	-3	-	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3	-1	0	-1	-4
N	-2	0	6	1	-3	-	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3	3	0	-1	-4
D	-2	-2	1	6	-3	-	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3	4	1	-1	-4
C	0	-3	-3	-3	9	-3	-	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1	-3	-3	-2	-4
Q	-1	1	0	0	-3	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2	0	3	-1	-4
E	-1	0	0	2	-4	4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2	1	4	-1	-4
G	0	-2	0	-1	-3	-2		-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3	-1	-2	-1	-4
H	-2	0	1	-1	-3	-	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3	0	0	-1	-4
I	-1	-3	-3	-3	-1	-	3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3	-3	-3	-1	-4
L	-1	-2	-3	-4	-1	-2		-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1	-4	-3	-1	-4
K	-1	2	0	-1	-3			1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2	0	1	-1	-4
M	-1	-1	-2	-3	-1	1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1	-3	-1	-1	-4
F	-2	-3	-3	-3	-2	-		-3	-3	-1	-	-	-3	0	6	-4	-2	-2	1	,	-1	-3	-3	-1	-4
P	-1	-2	-2	-1	-3	-		-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2	-2	-1	-2	-4
S	1	-1	1	0	-1	1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2	0	0	0	-4
T	0	-1	0	-1	-1	-	1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0	-1	-1	0	-4
W	-3	-3	-4	-4	-2	-2		-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11	2	-3	-4	-3	-2	-4
Y	-2	-2	-2	-3	-2	-1		-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1	-3	-2	-1	-4
V	0	-3	-3	-3	-1	-2	2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4	-3	-2	-1	-4
B	-2	-1	3	4	-3				-1	0	-3	-4	0	-3	-3	-2	0	-1	-4	-3	-3	4	1	-1	-4
Z	-1	0	0	1	-3	-			-2	0	-3	-3	1	-1	-3	-1	0	-1	-3	-2	-2	1	4	-1	-4
X	0	-1	-1	-1	-2	-	1 -	-1	-1	-1	-1	-1	-1	-1	-1	-2	0	0	-2	-1	-1	-1	-1	-1	-4
*	-4	-4	-4	-4	-4	4 -4		-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	4

$$
\begin{aligned}
& \text { Y mutates to } V \text { receives }-1 \\
& \text { M mutates to } L \text { receives } 2 \\
& E \text { gets deleted receives }-10 \\
& G \text { gets deleted receives }-10 \\
& D \text { matches } D \text { receives } 6 \\
& \hline \text { Total score }=-13 \\
& \hline
\end{aligned}
$$

\qquad

Parsimony

Genome 559: Introduction to Statistical and Computational Genomics

Elhanan Borenstein

A quick review

- Trees:
- Represent sequence relationships
- A phylogenetic tree has a topology and branch lengths (distances)

- The number of tree topologies grows very fast with the number of species!
- Distance trees
- Compute pairwise corrected distances
- Build tree by sequential clustering algorithm (UPGMA or Neighbor-Joining).
- These algorithms don't consider all tree topologies, so they are very fast, even for large trees.

"Maximum Parsimony Algorithm"

A fundamentally different method:
Instead of reconstructina a tree,
we will search for the best ree.

"Pluralitas non est ponenda sine necessitate"

(Maximum) Parsimony Principle

- "Pluralitas non est ponenda sine necessitate" (plurality should not be posited without necessity)

William of Ockham

- Occam's Razor: Of two equivalent theories or explanations, all other things being equal, the simpler one is to be preferred.
 (c. 1288 - c. 1348)
- "when you hear hoof beats, think horses, not zebras"

Medical diagnosis

- The KISS principle: "Keep It Simple, Stupid!"

Kelly Johnson, Engineer

- "Make everything as simple as possible, but not simpler"

Parsimony principle for phylogenetic trees

Find the tree that requires the fewest evolutionary changes!

Lizard Island

Consider 4 species

human
chimp
gorilla
orangutan

Consider 4 species

Sequence data:

```
human
chimp
gorilla
orangutan
```

- The same approach would work for any discrete property that can be associated with the various species:
- Gene content (presence/absence of each gene)
- Morphological features (e.g., "has wings", purple or white flowers)
- Numerical features (e.g., number of bristles)

Consider 4 species

Sequence data:

Parsimony Algorithm

1) Construct all possible trees
2) For each site in the alignment and for each tree count the minimal number of changes required
3) Add all sites up to obtain the total number of changes for each tree
4) Pick the tree with the lowest score

Consider 4 species

Consider 4 species

Consider site 1

	1	2	3	4	5	6
human						
chimp						
gorilla						
orangutan	a	g	t	c	t	c
a	g	a	g	t	c	
c	g	g	c	a	g	
c	g	g	g	a	c	

What is the minimal number of evolutionary changes that can account for the observed pattern?
(Note: This is the "small parsimony" problem)

Consider site 1

	1	2	3	4	5	6
human						
chimp						
gorilla						
orangutan	a	g	t	c	t	c
a	g	a	g	t	c	
c	g	g	c	a	g	
c	g	g	g	a	c	

What is the minimal number of evolutionary changes that can account for the observed pattern?
(Note: This is the "small parsimony" problem)

Consider site 1

	1	2	3	4	5	6
human						
chimp						
gorilla						
orangutan	a	g	t	c	t	c
a	g	a	g	t	c	
c	g	g	c	a	g	
c	g	g	g	a	c	

Consider site 1

	1	2	3	4	5	6
human						
chimp						
gorilla						
orangutan	a	g	t	c	t	c
a	g	a	g	t	c	
c	g	g	c	a	g	
c	g	g	g	a	c	

Consider site 1

	1	2		3	4		5
human	a	g		t	C		
chimp	a	9		a	g		
gorilla	c	g		g	c		
orangutan	C			g	g		

Consider site 2

| | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| human | a | g | t | c | t | c |
| chimp | a | g | a | g | t | c |
| gorilla | c | g | g | c | a | g |
| orangutan | c | g | g | g | a | c |

Uninformative (no changes)

Consider site 3

	1	2	3	4	5	6
human	a	g	t	c	t	c
chimp	a	g	a	g	t	c
gorilla	c	g	g	c	a	g
orangutan	c	g	g	g	a	c

Put sites 1 and 3 together

	1	2	3	4	5	6
human						
chimp	a	g	t	c	t	c
gorilla						
orangutan	g	a	g	t	c	
cran	g	g	c	a	g	
c	g	g	g	a	c	

Now put all of them together

1	2	3	4	5	6	
human	a	g	t	c	t	c
chimp	a	g	a	g	t	c
gorilla	c	g	g	c	a	g
orangutan	c	g	g	g	a	c

Which tree is the most parsimonious?

The parsimony algorithm

1) Construct all possible trees
2) For each site in the alignment and for each tree count the minimal number of changes required
3) Add all sites up to obtain the total number of changes for each tree
4) Pick the tree with the lowest score

The parsimony algorithm

Too many!

1) Construct all possible trees
2) For each site in the alignment and for each tree count the minimal number of changes required
3) Add all sites up to obtain the total number of changes for each tree
4) Pick the tree with the lowest score

The parsimony algorithm

Too many!

1) Construct all possible trees
2) For each site in the alignment and for each tree count the minimal number of changes required

How?

3) Add all sites up to obtain the total number of changes for each tree
4) Pick the tree with the lowest score

The parsimony algorithm

2) For each site in the alignment and for each tree count the minimal number of changes required

How? Fitch's algorithm
3) Add all sites up to obtain the total number of changes for each tree
4) Pick the tree with the lowest score

