
Parsimony
Small Parsimony

Genome 559: Introduction to Statistical and
Computational Genomics

Elhanan Borenstein

 The parsimony principle:

 Find the tree that requires the
fewest evolutionary changes!

 A fundamentally different method:

 Search rather than reconstruct

 Parsimony algorithm

1. Construct all possible trees

2. For each site in the alignment and for each tree count the
minimal number of changes required

3. Add sites to obtain the total number of changes required
for each tree

4. Pick the tree with the lowest score

A quick review

 The parsimony principle:

 Find the tree that requires the
fewest evolutionary changes!

 A fundamentally different method:

 Search rather than reconstruct

 Parsimony algorithm

1. Construct all possible trees

2. For each site in the alignment and for each tree count the
minimal number of changes required

3. Add sites to obtain the total number of changes required
for each tree

4. Pick the tree with the lowest score

A quick review

Too many!

The small
parsimony problem

 We divided the problem of finding the most
parsimonious tree into two sub-problems:

 Large parsimony: Find the topology which gives best score

 Small parsimony: Given a tree topology and the state in all
the tips, find the minimal number of changes required

 Divide and conquer. Think functions !!

 Large parsimony is “NP-hard”

 Small parsimony can be solved
quickly using Fitch’s algorithm

Large vs. Small Parsimony

Parsimony Algorithm
1) Construct all possible trees
2) For each site in the alignment and

for each tree count the minimal
number of changes required

3) Add all sites up to obtain the total
number of changes for each tree

4) Pick the tree with the lowest score

 Input:

1. A tree topology:

The Small Parsimony Problem

human chimp gorilla lemur gibbon bonobo

Human C A C T
Chimp T A C T
Bonobo A G C C
Gorilla A G C A
Gibbon G A C T
Lemur T A G T

 Output:
The minimal number of changes required: parsimony score

2. State assignments for
all tips:

human chimp gorilla lemur gibbon bonobo

C T G T A A

(but in fact, we will also find the most parsimonious
assignment for all internal nodes)

 Execute independently for each character:

 Two phases:

1. Bottom-up phase: Determine the set of possible
states for each internal node

2. Top-down phase: Pick a state for each internal node

Fitch’s algorithm

human chimp gorilla lemur gibbon bonobo

C T G T A A

2 1

1. Initialization: Ri = {si} for all tips

2. Traverse the tree from leaves to root (“post-order”)

3. Determine Ri of internal node i with children j, k:

1. Fitch’s algorithm: Bottom-up phase
(Determine the set of possible states for each internal node)


















kj

kjkj

i
RRotherwise

RRRRif
R



human chimp gorilla lemur gibbon bonobo

C T G T A A

1
C,T G,T

G,T,A

T

T,A
Let si denote the
state of node i and Ri
the set of possible
states of node i

1. Initialization: Ri = {si} for all tips

2. Traverse the tree from leaves to root (“post-order“)

3. Determine Ri of internal node i with children j, k:

1. Fitch’s algorithm: Bottom-up phase
(Determine the set of possible states for each internal node)

human chimp gorilla lemur gibbon bonobo

C T G T A A

1
C,T G,T

G,T,A

T

Parsimony-score =
union operations

Parsimony-score = 4

T,A


















kj

kjkj

i
RRotherwise

RRRRif
R



1. Pick arbitrary state in Rroot to be the state of the root ,sroot

2. Traverse the tree from root to leaves (“pre-order”)

3. Determine si of internal node i with parent j:

2. Fitch’s algorithm: Top-down phase
(Pick a state for each internal node)














i

jij

i
Rstatearbitraryotherwise

sRsif
s

human chimp gorilla lemur gibbon bonobo

C T G T A A

C,T G,T

G,T,A

T

Parsimony-score = 4

2

T,A

T T

T

T

A

1. Pick arbitrary state in Rroot to be the state of the root ,sroot

2. Traverse the tree from root to leaves (“pre-order”)

3. Determine si of internal node i with parent j:

2. Fitch’s algorithm: Top-down phase
(Pick a state for each internal node)

human chimp gorilla lemur gibbon bonobo

C T G T A A

Parsimony-score = 4

2














i

jij

i
Rstatearbitraryotherwise

sRsif
s

And now
back to the “big” parsimony problem

…

How do we find the most parsimonious tree
amongst the many possible trees?

