More on Functions

Genome 559: Introduction to Statistical and
Computational Genomics

Elhanan Borenstein

A quick review

* Functions:

= Reusable pieces of code (write once, use many)

= Take arguments, “do stuff”, and (usually)
return a value

stuff goes in (arguments)

4

4

other stuff comes out (return)

= Use to organize & clarify your code, reduce code duplication

= Defining a function:

def <function name> (<arguments>) :
<function code block>
<usually return something>

= Using (calling) a function:

<function defined here>

<my variable> = function name (<my arguments>)

A close analogy is the
mathematical function

A Python Function A mathematical Function

|
|
I
! X is an
arguments go in i argument
|
|
|
' | X
J

g Y -X te

‘ i the function itself

return value comes out

y is the

return value

A quick example

import sys

def makeDict (fileName) :
myFile = open(fileName, '"r")
myDict = {}
for line in myFile: L_ Write
fields = line.strip () .split("\t")

once
myDict[fields[0]] = float(fields[1])
myFile.close()
return myDict |
FirstFileName = sys.argv[1l] Use many
FirstDict = makeDict (FirstFileName) times

SecondFileName = sys.argv[2]
SecondDict = makeDict (SecondFileName)

FlyGenesDict = makeDict (“FlyGeneAtlas. txt”)

A note about namespace

import sys

def makeDict (fileName) :
myFile = open(fileName, '"r'")
myDict = {}
for line in myFile: L_ Write
fields = line.strip () .split("\t")

once
myDict[fields[0]] = float(fields[1])
myFile.close()
return myDict |
FirstFileName = sys.argv[1l] Use many
FirstDict = makeDict (FirstFileName) times

= sys.argv[2]
SecondDict = makeDict()

FlyGenesDict = makeDict ()

A note about namespace

import sys

def makeDict (fileName) :
myFile = open(fileName, '"r")
myDict = {}
for line in myFile:
fields = line.strip () .split("\t")

myDict[fields[0]] = float(fields[1])

myFile.close()
return myDict

FirstFileName = sys.argv[1l]
FirstDict = makeDict (FirstFileName)

SecondFileName = sys.argv[2]
= makeDict (SecondFileName)

= makeDict (“"FlyGeneAtlas.txt”)

L_ Write
once

Use many
times

Returning values

" Check the following function:

This function ..
..
def CalcSum(a list):
sum = 0
for item in a list:
sum += item
return sum

= \What does this function do?

Returning values

" Check the following function:

This function calculates the sum
of all the elements in a list
def CalcSum(a list):
sum = 0
for item in a 1list:
sum += item
return sum

= \What does this function do?

>>> my list = [1, 3, 2, 9]
>>> print CalcSum(my list)
15

Returning more than one value

= Let’s be more ambitious:

This function calculates the sum
AND the product of all the
elements in a list
def CalcSumAndProd(a list):
sum = 0
prod =1
for item in a_list:
sum += item
prod *= item
return ?°?°?

= How can we return both values?

Returning more than one value

= \We can use a list as a return value:

This function calculates the sum
AND the product of all the
elements in a list
def CalcSumAndProd(a list):
sum = 0
prod =1
for item in a_ list:
sum += item
prod *= item
return [sum, prod]

>>> my list = [1, 3, 2, 9]
>>> print CalcSumAndProd (my list)
[15, 54]

>>> res = CalcSumAndProd(my list)

v

>>> [s,p] = CalcSumAndProd(my list)

_—

List
assignment

multiple
assignment

Returning lists

* An increment function:

This function increment every element in
the input list by 1
def incrementEachElement(a list):
new list = []
for item in a list:
new list.append(item+1)
return new list

Now, create a list and use the function
my list = [1, 20, 34, 8]
print my list

Print my incremended list

my incremended list = incrementEachElement (my list)

[1, 20, 34, 8]
[2, 21, 35, 9]

" |s this good practice?

Returning lists

= An increment function (modified):

This function increment every element in
the input list by 1
def incrementEachElement(a list):
new list = []
for item in a list:
new list.append(item+1)
return new list

Now, create a list and use the function
my list = [1, 20, 34, 8]

print my list

my list = incrementEachElement (my list)
Print my list

[1, 20, 34, 8]
[2, 21, 35, 9]

= What about this?

Returning lists

* What will happen if we do this?

This function increment every element in
the input list by 1
def incrementEachElement(a list):
for index in range(len(a_list)):
a list[index] +=1

Now, create a list and use the function
my list = [1, 20, 34, 8]

print my list
incrementEachElement (my list)

print my list

= (note: no return value!!ll)

Returning lists

* What will happen if we do this?

This function increment every element in
the input list by 1
def incrementEachElement (a_list):
for index in range(len(a_list)):
a list[index] +=1

Now, create a list and use the function
my list = [1, 20, 34, 8]

print my list
incrementEachElement (my list)

print my list

= (note: no return value)

[2, 21, 35, 9]
[2, 21, 35, 9]

WHY IS THIS WORKING?

Pass-by-reference vs. pass-by-value

= Two fundamentally different function calling strategies:

= Pass-by-Value:

* The value of the argument is copied into a local variable
inside the function

= C, Scheme, C++

= Pass-by-reference:

= The function receives an implicit reference to the variable
used as argument, rather than a copy of its value

= Perl, VB, C++

= So, how does Python pass arguments?

Python passes arguments by reference

(almost)

= S0 ... this will work!

This function increment every element in
the input list by 1
def incrementEachElement(a list):
for index in range(len(a list)):
a list[index] +=1

>>> my list = [1, 20, 34, 8]

>>> incrementEachElement (my list)
>>> my list

[2, 21, 35, 9]

>>> incrementEachElement (my list)
>>> my list

[3, 22, 36, 10]

Python passes arguments by reference

(almost)

= How about this?

def addQuestionMark (word) :

print “word inside function (1) :”, word

word = word + “?”

print “word inside function (2):”, word
my word = “really”

addQuestionMark (my word)
print “word after function:”, my word

Python passes arguments by reference

(almost)

= How about this?

def addQuestionMark (word) :
print “word inside function (1) :”, word
word = word + “?”
print “word inside function (2):”, word
my word = “really”
addQuestionMark (my word)
print “word after function:”, my word
word inside function (1): really
word inside function (2): really?
word after function: really

= Remember:
1. Strings/numbers are immutable
2. The assignment command often creates a new object

Passing by reference: the bottom line

* You can (and should) use this option when:
= Handling large data structures
= “In place” changes make sense

= Be careful (a double-edged sword):
= Don’t lose the reference!
= Don’t change an argument by mistake

= When we learn about objects and methods we will
see yet an additional way to change variables

Required Arguments

= How about this?

def printMulti (text, n):
for i in range(n):
print text

>>> printMulti (“Bla”,h4)
Bla
Bla
Bla
Bla

* What happens if | try to do this:

>>> printMulti ("Bla")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: printMulti () takes exactly 2
arguments (1 given)

Default Arguments

= Python allows you to define defaults for various
arguments:

def printMulti (text, n=3):
for i in range(n):
print text

>>> printMulti (“Bla”,4)
Bla
Bla
Bla
Bla

>>> printMulti (“Yada”)
Yada
Yada
Yada

Default Arguments

= This is very useful if you have functions with

numerous arguments/parameters, most of which will
rarely be changed by the user:

def runBlast(fasta file, costGap=10, E=10.0, desc=100,
max align=25, matrix="BLOSUM62”, sim=0.7, corr=True) :
<runBlast code here>

= You can now simply use:

>>> runBlast (“my fasta.txt”)

= |nstead of:

>>> runBlast (“my fasta.txt”,10,10.0,100,25,“BLOSUM62",0.7,
True)

Keyword Arguments

" You can still provide values for specific arguments
using their label:

def runBlast(fasta file, costGap=10, E=10.0, desc=100,
max align=25, matrix="BLOSUM62”, sim=0.7, corr=True):
<runBlast code here>

>>> runBlast (“my fasta.txt”, matrix=“PAM40")

Code like a pro ... o

DAY

Code like a pro ...

Write
comments!

Why comments o

DAY

= Uncommented code = useless code

= Comments are your way to communicate with:
= Future youl
= The poor bastard that inherits your code
= Your users (most academic code is open source!)

= At minimum, write a comment to explain:
= Each function: target, arguments, return value
= Each File: purpose, major revisions
= Non-trivial code blocks
* Non-trivial variables

= Whatever you want future you to remember

Best (real) comments ever

H* H

When I wrote this, only God and I understood what I was doing
Now, God only knows

H*+ H HF

I dedicate all this code, all my work, to my wife, Darlene,
who will have to support me and our three children and the
dog once it gets released into the public.

= o=

I am not responsible of this code.
They made me write it, against my will.

drunk. fix later

Magic. Do not touch.

+=

I am not sure if we need this, but too scared to delete.

3+

Dear future me. Please forgive me.
I can't even begin to express how sorry I am.

3+

no comments for you!
it was hard to write so it should be hard to read

3+ 3

somedevl - 6/7/02 Adding temporary tracking of Logic screen
somedev2 - 5/22/07 Temporary my ass

Sample problem #1

= Write a function that calculates the first n elements of
the Fibonacci sequence.

= Reminder: In the Fibonacci sequence of numbers, each number is the
sum of the previous two numbers, starting with 0 and 1. This sequence
begins: 0,1, 1, 2,3,5, 8,13, 21, 34, 55, 89, 144, 233,377, 610, 987, ...

= The function should return these n elements as a list

Solution #1

Calculate Fibonacci series up to n
def fibonacci(n):
fib seq = [0, 1];
for i in range(2,n):
fib seq.append(fib seq[i-1] + fib seq[i-2])

return fib seq[0:n] # Why not just fib seqg?

print fibonacci (10)

[, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Sample problem #2

= Make the following improvements to your function:

1.

Add two optional arguments that will denote alternative
starting values (instead of 0 and 1).

= fibonacci(10) 2 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

= fibonacci(10,4) = [4, 1,5, 6,11, 17, 28, 45, 73, 118]

= fibonacci(10,4,7) 2[4, 7, 11, 18, 29, 47, 76, 123, 199, 322]

Return, in addition to the sequence, also the ratio of the last
two elements you calculated (how would you return it?).

a

S

Solution #2

Calculate Fibonacci series up to n
def fibonacci(n, startl=0, start2=1l):
fib seq = [startl, start2];
for i in range(2,n):
fib seq.append(fib seq[i-1]+fib seq[i-2])

ratio = float(fib seq[n-1])/float(fib seq[n-2])
return [fib seq[0:n], ratio]

seq, ratio = fibonacci (1000)

print "first 10 elements:",seq[0:10]

print "ratio:", ratio

Will print:

first 10 elements:[0, 1, 1, 2, 3, 5, 8, 13, 21,34]
ratio: 1.61803398875

Challenge problem

Write your own sort function!
Sort elements in ascending order.

The function should sort the input list in-place

(i.e. do not return a new sorted list as a return value; the list that is passed
to the function should itself be sorted after the function is called).

As a return value, the function should return the
number of elements that were in their appropriate
(“sorted”) location in the original list.

You can use any sorting algorithm. Don’t worry about
efficiency right now.

Challenge solution 1

def swap(a list, k, 1):
temp = a list[k]
a list[k] = a_list[1]
a list[l] = temp

def bubbleSort(a list):
n = len(a_list)
a list copy = [] # note: why don't we use assignment
for item in a list: a list copy.append(item)
This is the actua
bubble sort
for i in range(n):
for j in range(n-1):
if a_list[]j] > a_list[j+1]:
swap(a_list, j, j+l) # note: in place swapping

check how many are in the right place
count = 0
for i in range(n):
if a_list[i] == a_list copy[i]: count +=1
return count

| sorting

algorithm. Simple!

>> 1s = [1, 3, 2, 15, 7, 4, 8, 12]
>>> print bubbleSort (1ls)

2

>>> print ls

[, 2, 3, 4, 7, 8, 12, 15]

Alternative challenge solution 1

def swap(a list, k, 1):
temp = a list[k]
a list[k] = a_list[1]
a list[l] = temp

def bubbleSort(a list):
n = len(a_list)
a list copy = [] # note: why don't we use assignment
for item in a list: a list copy.append(item)
- - - Why is this better?

bubble sort Why is this working
for i in range(n):
for j in range(n-1-i):
if a_list[]j] > a_list[j+1]:
swap(a_list, j, j+l) # note: in place swapping

check how many are in the right place
count = 0
for i in range(n):
if a_list[i] == a_list copy[i]: count +=1
return count

J

>> 1s = [1, 3, 2, 15, 7, 4, 8, 12]
>>> print bubbleSort (1ls)

2

>>> print ls

[, 2, 3, 4, 7, 8, 12, 15]

