
More on Functions

Genome 559: Introduction to Statistical and
Computational Genomics

Elhanan Borenstein

A quick review

 Functions:
 Reusable pieces of code (write once, use many)

 Take arguments, “do stuff”, and (usually)
return a value

 Use to organize & clarify your code, reduce code duplication

 Defining a function:

 Using (calling) a function:
<function defined here>

<my_variable> = function_name(<my_arguments>)

def <function_name>(<arguments>):

 <function code block>

 <usually return something>

2 xy x e 
the function itself

A close analogy is the
mathematical function

things happen

arguments go in

return value comes out

x is an

argument

y is the

return value

A Python Function A mathematical Function

A quick example

import sys

def makeDict(fileName):

 myFile = open(fileName, "r")

 myDict = {}

 for line in myFile:

 fields = line.strip().split("\t")

 myDict[fields[0]] = float(fields[1])

 myFile.close()

 return myDict

FirstFileName = sys.argv[1]

FirstDict = makeDict(FirstFileName)

SecondFileName = sys.argv[2]

SecondDict = makeDict(SecondFileName)

…

FlyGenesDict = makeDict(“FlyGeneAtlas.txt”)

Write
once

Use many
times

A note about namespace

import sys

def makeDict(fileName):

 myFile = open(fileName, "r")

 myDict = {}

 for line in myFile:

 fields = line.strip().split("\t")

 myDict[fields[0]] = float(fields[1])

 myFile.close()

 return myDict

FirstFileName = sys.argv[1]

FirstDict = makeDict(FirstFileName)

SecondFileName = sys.argv[2]

SecondDict = makeDict(SecondFileName)

…

FlyGenesDict = makeDict(“FlyGeneAtlas.txt”)

Write
once

Use many
times

A note about namespace

import sys

def makeDict(fileName):

 myFile = open(fileName, "r")

 myDict = {}

 for line in myFile:

 fields = line.strip().split("\t")

 myDict[fields[0]] = float(fields[1])

 myFile.close()

 return myDict

FirstFileName = sys.argv[1]

FirstDict = makeDict(FirstFileName)

SecondFileName = sys.argv[2]

SecondDict = makeDict(SecondFileName)

…

FlyGenesDict = makeDict(“FlyGeneAtlas.txt”)

Write
once

Use many
times

Returning values
 Check the following function:

 What does this function do?

This function …

…

def CalcSum(a_list):

 sum = 0

 for item in a_list:

 sum += item

 return sum

Returning values

>>> my_list = [1, 3, 2, 9]

>>> print CalcSum(my_list)

15

 Check the following function:

 What does this function do?

This function calculates the sum

of all the elements in a list

def CalcSum(a_list):

 sum = 0

 for item in a_list:

 sum += item

 return sum

Returning more than one value
 Let’s be more ambitious:

 How can we return both values?

This function calculates the sum

AND the product of all the

elements in a list

def CalcSumAndProd(a_list):

 sum = 0

 prod = 1

 for item in a_list:

 sum += item

 prod *= item

 return ???

Returning more than one value
 We can use a list as a return value:

This function calculates the sum

AND the product of all the

elements in a list

def CalcSumAndProd(a_list):

 sum = 0

 prod = 1

 for item in a_list:

 sum += item

 prod *= item

 return [sum, prod]

>>> my_list = [1, 3, 2, 9]

>>> print CalcSumAndProd(my_list)

[15, 54]

>>> res = CalcSumAndProd(my_list)

>>> [s,p] = CalcSumAndProd(my_list)

List
assignment

multiple
assignment

Returning lists
 An increment function:

 Is this good practice?

This function increment every element in

the input list by 1

def incrementEachElement(a_list):

 new_list = []

 for item in a_list:

 new_list.append(item+1)

 return new_list

Now, create a list and use the function

my_list = [1, 20, 34, 8]

print my_list

my_incremended_list = incrementEachElement(my_list)

Print my_incremended_list

[1, 20, 34, 8]

[2, 21, 35, 9]

Returning lists
 An increment function (modified):

 What about this?

This function increment every element in

the input list by 1

def incrementEachElement(a_list):

 new_list = []

 for item in a_list:

 new_list.append(item+1)

 return new_list

Now, create a list and use the function

my_list = [1, 20, 34, 8]

print my_list

my_list = incrementEachElement(my_list)

Print my_list

[1, 20, 34, 8]

[2, 21, 35, 9]

Returning lists
 What will happen if we do this?

 (note: no return value!!!)

This function increment every element in

the input list by 1

def incrementEachElement(a_list):

 for index in range(len(a_list)):

 a_list[index] +=1

Now, create a list and use the function

my_list = [1, 20, 34, 8]

print my_list

incrementEachElement(my_list)

print my_list

 What will happen if we do this?

 (note: no return value)

Returning lists

This function increment every element in

the input list by 1

def incrementEachElement(a_list):

 for index in range(len(a_list)):

 a_list[index] +=1

Now, create a list and use the function

my_list = [1, 20, 34, 8]

print my_list

incrementEachElement(my_list)

print my_list

[2, 21, 35, 9]

[2, 21, 35, 9]

WHY IS THIS WORKING?

Pass-by-reference vs. pass-by-value
 Two fundamentally different function calling strategies:

 Pass-by-Value:

 The value of the argument is copied into a local variable
inside the function

 C, Scheme, C++

 Pass-by-reference:

 The function receives an implicit reference to the variable
used as argument, rather than a copy of its value

 Perl, VB, C++

 So, how does Python pass arguments?

Python passes arguments by reference
(almost)

 So … this will work!

This function increment every element in

the input list by 1

def incrementEachElement(a_list):

 for index in range(len(a_list)):

 a_list[index] +=1

>>> my_list = [1, 20, 34, 8]

>>> incrementEachElement(my_list)

>>> my_list

[2, 21, 35, 9]

>>> incrementEachElement(my_list)

>>> my_list

[3, 22, 36, 10]

Python passes arguments by reference
(almost)

 How about this?

def addQuestionMark(word):

 print “word inside function (1):”, word

 word = word + “?”

 print “word inside function (2):”, word

my_word = “really”

addQuestionMark(my_word)

print “word after function:”, my_word

Python passes arguments by reference
(almost)

 How about this?

 Remember:

1. Strings/numbers are immutable

2. The assignment command often creates a new object

def addQuestionMark(word):

 print “word inside function (1):”, word

 word = word + “?”

 print “word inside function (2):”, word

my_word = “really”

addQuestionMark(my_word)

print “word after function:”, my_word

word inside function (1): really

word inside function (2): really?

word after function: really

Passing by reference: the bottom line

 You can (and should) use this option when:

 Handling large data structures

 “In place” changes make sense

 Be careful (a double-edged sword):

 Don’t lose the reference!

 Don’t change an argument by mistake

 When we learn about objects and methods we will
see yet an additional way to change variables

Required Arguments
 How about this?

 def printMulti(text, n):

 for i in range(n):

 print text

>>> printMulti(“Bla”,4)

Bla

Bla

Bla

Bla

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: printMulti() takes exactly 2

arguments (1 given)

>>> printMulti("Bla")

 What happens if I try to do this:

Default Arguments
 Python allows you to define defaults for various

arguments:

 def printMulti(text, n=3):

 for i in range(n):

 print text

>>> printMulti(“Bla”,4)

Bla

Bla

Bla

Bla

>>> printMulti(“Yada”)

Yada

Yada

Yada

Default Arguments
 This is very useful if you have functions with

numerous arguments/parameters, most of which will
rarely be changed by the user:

 You can now simply use:

 Instead of:

def runBlast(fasta_file, costGap=10, E=10.0, desc=100,

 max_align=25, matrix=“BLOSUM62”, sim=0.7, corr=True):

 <runBlast code here>

>>> runBlast(“my_fasta.txt”)

>>> runBlast(“my_fasta.txt”,10,10.0,100,25,“BLOSUM62”,0.7,

True)

Keyword Arguments
 You can still provide values for specific arguments

using their label:

def runBlast(fasta_file, costGap=10, E=10.0, desc=100,

 max_align=25, matrix=“BLOSUM62”, sim=0.7, corr=True):

 <runBlast code here>

 …

>>> runBlast(“my_fasta.txt”, matrix=“PAM40”)

TIP
OF THE

DAY
Code like a pro …

TIP
OF THE

DAY
Code like a pro …

Write
comments!

TIP
OF THE

DAY
Why comments

 Uncommented code = useless code

 Comments are your way to communicate with:

 Future you!

 The poor bastard that inherits your code

 Your users (most academic code is open source!)

 At minimum, write a comment to explain:

 Each function: target, arguments, return value

 Each File: purpose, major revisions

 Non-trivial code blocks

 Non-trivial variables

 Whatever you want future you to remember

Best (real) comments ever
When I wrote this, only God and I understood what I was doing

Now, God only knows

I dedicate all this code, all my work, to my wife, Darlene,

who will have to support me and our three children and the

dog once it gets released into the public.

drunk. fix later

I am not sure if we need this, but too scared to delete.

Magic. Do not touch.

I am not responsible of this code.

They made me write it, against my will.

Dear future me. Please forgive me.

I can't even begin to express how sorry I am.

no comments for you!

it was hard to write so it should be hard to read

somedev1 - 6/7/02 Adding temporary tracking of Logic screen

somedev2 - 5/22/07 Temporary my ass

Sample problem #1
 Write a function that calculates the first n elements of

the Fibonacci sequence.
 Reminder: In the Fibonacci sequence of numbers, each number is the

sum of the previous two numbers, starting with 0 and 1. This sequence
begins: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, …

 The function should return these n elements as a list

Calculate Fibonacci series up to n

def fibonacci(n):

 fib_seq = [0, 1];

 for i in range(2,n):

 fib_seq.append(fib_seq[i-1] + fib_seq[i-2])

 return fib_seq[0:n] # Why not just fib_seq?

print fibonacci(10)

Solution #1

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Sample problem #2
 Make the following improvements to your function:

1. Add two optional arguments that will denote alternative
starting values (instead of 0 and 1).

 fibonacci(10)  [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

 fibonacci(10,4)  [4, 1, 5, 6, 11, 17, 28, 45, 73, 118]

 fibonacci(10,4,7) [4, 7, 11, 18, 29, 47, 76, 123, 199, 322]

2. Return, in addition to the sequence, also the ratio of the last
two elements you calculated (how would you return it?).

Solution #2
Calculate Fibonacci series up to n

def fibonacci(n, start1=0, start2=1):

 fib_seq = [start1, start2];

 for i in range(2,n):

 fib_seq.append(fib_seq[i-1]+fib_seq[i-2])

 ratio = float(fib_seq[n-1])/float(fib_seq[n-2])

 return [fib_seq[0:n], ratio]

seq, ratio = fibonacci(1000)

print "first 10 elements:",seq[0:10]

print "ratio:", ratio

Will print:

first 10 elements:[0, 1, 1, 2, 3, 5, 8, 13, 21,34]

ratio: 1.61803398875

Challenge problem
 Write your own sort function!

 Sort elements in ascending order.

 The function should sort the input list in-place
(i.e. do not return a new sorted list as a return value; the list that is passed
to the function should itself be sorted after the function is called).

 As a return value, the function should return the
number of elements that were in their appropriate
(“sorted”) location in the original list.

 You can use any sorting algorithm. Don’t worry about
efficiency right now.

Challenge solution 1

This is the actual sorting
algorithm. Simple!

def swap(a_list, k, l):

 temp = a_list[k]

 a_list[k] = a_list[l]

 a_list[l] = temp

def bubbleSort(a_list):

 n = len(a_list)

 a_list_copy = [] # note: why don't we use assignment

 for item in a_list: a_list_copy.append(item)

 # bubble sort

 for i in range(n):

 for j in range(n-1):

 if a_list[j] > a_list[j+1]:

 swap(a_list, j, j+1) # note: in place swapping

 # check how many are in the right place

 count = 0

 for i in range(n):

 if a_list[i] == a_list_copy[i]: count += 1

 return count

>>> ls = [1, 3, 2, 15, 7, 4, 8, 12]

>>> print bubbleSort(ls)

2

>>> print ls

[1, 2, 3, 4, 7, 8, 12, 15]

Alternative challenge solution 1

Why is this better?
Why is this working?

def swap(a_list, k, l):

 temp = a_list[k]

 a_list[k] = a_list[l]

 a_list[l] = temp

def bubbleSort(a_list):

 n = len(a_list)

 a_list_copy = [] # note: why don't we use assignment

 for item in a_list: a_list_copy.append(item)

 # bubble sort

 for i in range(n):

 for j in range(n-1-i):

 if a_list[j] > a_list[j+1]:

 swap(a_list, j, j+1) # note: in place swapping

 # check how many are in the right place

 count = 0

 for i in range(n):

 if a_list[i] == a_list_copy[i]: count += 1

 return count

>>> ls = [1, 3, 2, 15, 7, 4, 8, 12]

>>> print bubbleSort(ls)

2

>>> print ls

[1, 2, 3, 4, 7, 8, 12, 15]

