Modules

Genome 559: Introduction to Statistical and
Computational Genomics

Elhanan Borenstein

A quick review

* Functions:

= Reusable pieces of code (write once, use many)

= Take arguments, “do stuff”, and (usually)
return a value

stuff goes in (arguments)

4

4

other stuff comes out (return)

= Use to organize & clarify your code, reduce code duplication

= Defining a function:

def <function name> (<arguments>) :
<function code block>
<usually return something>

= Using (calling) a function:

<function defined here>

<my variable> = function name (<my arguments>)

A quick review

= Functions have their own namespace

= Local variables inside the function are invisible outside

= Arguments can be of any type!

= Number and strings
= Lists and dictionaries

= Return values can be of any type!

* Number and strings

= Lists (as a way to return multiple values)[ac: caicsumproa(a 1ist) -

return [sum, prod]

= Pass-by-reference vs. pass-by-value

= Default arguments def ;'DJ':J:.ntMulti(text, n=3) :

Modules

= Recall your makeDict function:

def makeDict (fileName) :

myFile = open(fileName, '"r'")

myDict = {}

for line in myFile:
fields = line.strip () .split("\t")
myDict[fields[0]] = float(fields[1])

myFile.close()

return myDict

= Thisis in fact a very useful function which you may
want to use in many programs!

= So are other functions you wrote (e.g., makeMatrix)

Modules

A module is a file that contains a collection of related
functions.

You have already used several built-in modules:

= e.g.:sys, math

Python has numerous standard modules

= Python Standard Library: (http://docs.python.org/library/)

It is easy to create and use your own modules:
= JUST PUT YOUR FUNCTIONS IN A SEPARATE FILE!

http://docs.python.org/library/
http://docs.python.org/library/

Importing Modules

* To use a module, you first have to import it into your

Namespace

"= To import the entire module:

import module name

my prog.py

utils.py

import utils
import sys

Dictl = utils.makeDict(sys.argv[1l])
Dict2 = utils.makeDict(sys.argv[2])

Mtrx = utils.makeMatrix (“blsm.txt”)

This function makes a dictionary
def makeDict (fileName) :
myFile = open(fileName, "r'")
myDict = {}
for line in myFile:
fields = line.strip() .split("\t")
myDict[fields[0]] = float(fields[1])
myFile.close()
return myDict

This function reads a 2D matrix
def makeMatrix (fileName) :
< ... >

The dot notation

" Why did weuseutils.makeDict () instead of
justmakeDict ()?

* Dot notation allows the Python interpreter to organize
and divide the namespace

Sample problem #2 from previous class
= Make the following improvements to your function:

1. Add two optional arguments that will denote alternative
starting values (instead of 0 and 1).
= fibonacci(10) 2 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
= fibonacci(10,4) = [4, 1,5, 6,11, 17, 28, 45, 73, 118]
= fibonacci(10,4,7) 2[4, 7, 11, 18, 29, 47, 76, 123, 199, 322]

2. Return, in addition to the sequence, also the ratio of the last
two elements you calculated (how would you return it?).

3. Create a module “my_math” and include your function in this
module. Import this module into another program and use the

function.
/ R
1

Recall Solution #2 from previous class

Calculate Fibonacci series up to n
def fibonacci(n, startl=0, start2=1l):
fib seq = [startl, start2];
for i in range(2,n):
fib seq.append(fib seq[i-1]+fib seq[i-2])

ratio = float(fib seq[n-1])/float(fib seq[n-2])
return [fib seq[0:n], ratio]

seq, ratio = fibonacci (1000)

print "first 10 elements:",seq[0:10]

print "ratio:", ratio

Will print:

first 10 elements:[0, 1, 1, 2, 3, 5, 8, 13, 21,34]
ratio: 1.61803398875

Sample problem #2.1

* Now, Create a module “my_math” and include your
function in this module. Import this module into
another program and use the function.

Solution #2.1
my_math.py

Calculate Fibonacci series up to n
def fibonacci(n, startl=0, start2=1l):
fib seq = [startl, start2];
for i in range(2,n):
fib seq.append(fib seq[i-1]+fib seq[i-2])

ratio = float(fib seq[n-1])/float(fib_seq[n-2])
return [fib seq[0:n], ratio]

my prog.py

import my math

seq, ratio = my math.fibonacci(1000)

print "first 10 elements:",seq[0:10]

print "ratio:", ratio

Will print:

first 10 elements: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
ratio: 1.61803398875

fib = my math.fibonacci # creating a local name
print f£ib(5,12,14)

Will print:

[[12, 14, 26, 40, 66], 1.65]

Challenge problem

Write your own sort function!
Sort elements in ascending order.

The function should sort the input list in-place

(i.e. do not return a new sorted list as a return value; the list that is passed
to the function should itself be sorted after the function is called).

As a return value, the function should return the
number of elements that were in their appropriate
(“sorted”) location in the original list.

You can use any sorting algorithm. Don’t worry about
efficiency right now.

Challenge solution 1

def swap(a list, k, 1):
temp = a list[k]
a list[k] = a_list[1]
a list[l] = temp

def bubbleSort(a list):
n = len(a_list)
a list copy = [] # note: why don't we use assignment
for item in a list: a list copy.append(item)
This is the actua
bubble sort
for i in range(n):
for j in range(n-1):
if a_list[]j] > a_list[j+1]:
swap(a_list, j, j+l) # note: in place swapping

check how many are in the right place
count = 0
for i in range(n):
if a_list[i] == a_list copy[i]: count +=1
return count

| sorting

algorithm. Simple!

>> 1s = [1, 3, 2, 15, 7, 4, 8, 12]
>>> print bubbleSort (1ls)

2

>>> print ls

[, 2, 3, 4, 7, 8, 12, 15]

Challenge solution 1

def swap(a list, k, 1):
temp = a list[k]
a list[k] = a_list[1]
a list[l] = temp

def bubbleSort(a list):
n = len(a_list)
a list copy = [] # note: why don't we use assignment
for item in a list: a list copy.append(item)
- - - Why is this better?

bubble sort Why is this working
for i in range(n):
for j in range(n-1-i):
if a_list[]j] > a_list[j+1]:
swap(a_list, j, j+l) # note: in place swapping

check how many are in the right place
count = 0
for i in range(n):
if a_list[i] == a_list copy[i]: count +=1
return count

J

>> 1s = [1, 3, 2, 15, 7, 4, 8, 12]
>>> print bubbleSort (1ls)

2

>>> print ls

[, 2, 3, 4, 7, 8, 12, 15]

