
Sorting,
Functions as Arguments

Genome 559: Introduction to Statistical and
Computational Genomics

Elhanan Borenstein

A quick review

 Functions:
 Reusable pieces of code (write once, use many)

 Take arguments, “do stuff”, and (usually)
return a value

 Use to organize & clarify your code, reduce code duplication

 Defining a function:

 Using (calling) a function:
<function defined here>

<my_variable> = function_name(<my_arguments>)

def <function_name>(<arguments>):

 <function code block>

 <usually return something>

A quick review

 Returning multiple values from a function
 return [sum, prod]

 Pass-by-reference vs. pass-by-value

 Default and keyword Arguments
 def printMulti(text, n=3):

 Modules:
 Easy to create and use your own modules

 To use a module, first import it:
 import utils

 Use the dot notation:
 utils.makeDict()

Sorting

>>> myList = ['Curly', 'Moe', 'Larry']

>>> print myList

['Curly', 'Moe', 'Larry']

>>> myList.sort()

>>> print myList

['Curly', 'Larry', 'Moe']

(by default this is a lexicographical sort because the elements
in the list are strings)

Sorting
 Typically applied to lists of things

 Input order of things can be anything

 Output order is determined by the type of sort

Sorting defaults
 String sorts - ascending order, with all capital letters

before all small letters:

 myList = ['a', 'A', 'c', 'C', 'b', 'B']

 myList.sort()

 print myList

 ['A', 'B', 'C', 'a', 'b', 'c']

 Number sorts - ascending order:

 myList = [3.2, 1.2, 7.1, -12.3]

 myList.sort()

 print myList

 [-12.3, 1.2, 3.2, 7.1]

TIP
OF THE

DAY
Code like a pro …

 When you’re using a function that you did not
write, try to guess what’s under the hood!
(hint: no magics or divine forces are involved)

 How does split() work?

 How does readlines() work?

 How does sort() work?

Sorting algorithms

(a.k.a. “how would you sort a list of numbers?”)

Common sorting algorithms

 Naïve sorting

 Selection sort: At each iteration, find the smallest

element and move it to the beginning of the list

 Insertion sort: At each iteration, removes one element

and insert it to the correct location in the sorted sub-list

 Bubble sort
Swap two adjacent elements whenever they are not in the
right order

 Merge sort
Split your list into two halves, sort each half, merge the two
sorted halves, maintaining a sorted order

What if we want to sort something else?

What if we want a different sort order?

But …

What if I don’t know any sorting algorithm?

But …

What if we want to sort something else?

What if we want a different sort order?

What if I don’t know any sorting algorithm?

But …

What if we want to sort something else?

What if we want a different sort order?

What if I don’t know any sorting algorithm?

But …

What if we want to sort something else?

What if we want a different sort order?

What if I don’t know any sorting algorithm?

?

Defining sorting order

The sort() function allows us to define how
comparisons are performed! We just write a
comparison function and provide it as an
argument to the sort function:

myList.sort(myComparisonFunction)

(The sorting algorithm is done for us. All we need to
provide is a comparison rule in the form of a function!)

def myComparison(a, b):

 if a > b:

 return -1

 elif a < b:

 return 1

 else:

 return 0

assuming a and b
are numbers, what
kind of sort would

this give?

Comparison function
 Always takes 2 arguments

 Returns:
 -1 if first argument should appear earlier in sort

 1 if first argument should appear later in sort

 0 if they are tied

def myComparison(a, b):

 if a > b:

 return -1

 elif a < b:

 return 1

 else:

 return 0

myList = [3.2, 1.2, 7.1, -12.3]

myList.sort(myComparison)

print myList

[7.1, 3.2, 1.2, -12.3]

Using the comparison function

descending
numeric sort

>>> print myListOfLists

[[1, 2, 4, 3], ['a', 'b'], [17, 2, 21], [0.5]]

>>>

>>> myListOfLists.sort(myLOLComparison)

>>> print myListOfLists

[[1, 2, 4, 3], [17, 2, 21], ['a', 'b'], [0.5]]

You can write a comparison function to
sort anything in any way you want!!

What kind of comparison
function is this?

>>> print myListOfLists

[[1, 2, 4, 3], ['a', 'b'], [17, 2, 21], [0.5]]

>>>

>>> myListOfLists.sort(myLOLComparison)

>>> print myListOfLists

[[1, 2, 4, 3], [17, 2, 21], ['a', 'b'], [0.5]]

You can write a comparison function to
sort anything in any way you want!!

def myLOLComparison(a, b):

 if len(a) > len(b):

 return -1

 elif len(a) < len(b):

 return 1

 else:

 return 0

It specifies a descending sort based on
the length of the elements in the list:

(e.g. comparing "JIM" and "jIm" should return 0,
 comparing "Jim" and "elhanan" should return 1)

Sample problem #1
 Write a function that compares two strings ignoring

upper/lower case

 Remember, your comparison function should:
 Return -1 if the first string should come earlier

 Return 1 if the first string should come later

 Return 0 if they are tied

 Use your function to compare the above 2 examples
and make sure you get the right return value

def caselessCompare(a, b):

 a = a.lower()

 b = b.lower()

 if a < b:

 return -1

 elif a > b:

 return 1

 else:

 return 0

alternatively convert to uppercase

Solution #1

