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 The clustering problem: 

 partition genes into distinct sets with  
high homogeneity and high separation 

 Different representations 

 Homogeneity vs Separation 

 Many possible distance metrics 

 Method matters; metric matters; definitions matter; 

 Hierarchical clustering algorithm: 
1. Assign each object to a separate cluster. 

2. Find the pair of clusters with the shortest distance,  
and regroup them into a single cluster. 

3. Repeat 2 until there is a single cluster. 

 

A quick review 



K-mean clustering 
  

(vs. Hierarchical clustering) 



K-mean clustering  

 An algorithm for partitioning n observations/points 
into k clusters such that each observation belongs to 
the cluster with the nearest mean/center 
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 An algorithm for partitioning n  
observations/points into k clusters such  
that each observation belongs to the  
cluster with the nearest mean/center 
 

 The chicken and egg problem:  
I do not know the means before I determine the partitioning into clusters 
I do not know the partitioning into clusters before I determine the means  
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 An algorithm for partitioning n  
observations/points into k clusters such  
that each observation belongs to the  
cluster with the nearest mean/center 
 

 The chicken and egg problem:  
I do not know the means before I determine the partitioning into clusters 
I do not know the partitioning into clusters before I determine the means  
 

 Key principle - cluster around mobile centers: 

 Start with some random locations of means/centers, partition 
into clusters according to these centers, and then correct the 
centers according to the clusters 
[similar to EM (expectation-maximization)  algorithms] 

 

K-mean clustering: Chicken and egg  



 The number of centers, k, has to be specified a-priori 
 

 Algorithm: 

1. Arbitrarily select k initial centers 

2. Assign each element to the closest center 

3. Re-calculate centers (mean position of the 
assigned elements) 

4. Repeat 2 and 3 until … 
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How can we do 
this efficiently? 
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 Decomposition of a metric space determined by 
distances to a specified discrete set of “centers” in the 
space 

 Each colored cell represents the collection of all points 
in this space that are closer to a specific center s than 
to any other center 

 Several algorithms exist to find 
the Voronoi diagram. 

Voronoi diagram  



 The number of centers, k, has to be specified a priori 
 

 Algorithm: 

1. Arbitrarily select k initial centers 

2. Assign each element to the closest center (Voronoi) 

3. Re-calculate centers (mean position of the 
assigned elements) 

4. Repeat 2 and 3 until one of the following 
termination conditions is reached: 

i. The clusters are the same as in the previous iteration 

ii. The difference between two iterations is smaller than a 
specified threshold 

iii. The maximum number of iterations has been reached 
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K-mean clustering example  
 Two sets of points  

randomly generated 
 200 centered on (0,0) 

 50 centered on (1,1) 

 



K-mean clustering example  
 Two points are  

randomly chosen  
as centers (stars) 

 

 



K-mean clustering example  
 Each dot can now  

be assigned to the  
cluster with the  
closest center 

 



K-mean clustering example  
 First partition into 

clusters 



 Centers are  
re-calculated  
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 And are again used 

to partition the  
points 
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 Second partition into 

clusters 



K-mean clustering example  
 Re-calculating centers 

again 



K-mean clustering example  
 And we can again  

partition the points 



K-mean clustering example  
 Third partition  

into clusters 



K-mean clustering example  
 After 6 iterations: 

 

 The calculated  
centers remains  
stable 
 



K-mean clustering: Summary 
 The convergence of k-mean is usually quite fast 

(sometimes 1 iteration results in a stable solution) 
 

 K-means is time- and memory-efficient 
 

 Strengths: 

 Simple to use  

 Fast 

 Can be used with very large data sets 

 Weaknesses: 

 The number of clusters has to be predetermined  

 The results may vary depending on the initial choice of 
centers 

 



K-mean clustering: Variations 
 

 Expectation-maximization (EM):  
maintains probabilistic assignments to clusters, 
instead of deterministic assignments, and multivariate 
Gaussian distributions instead of means. 

 

 k-means++: attempts to choose better starting points. 

 

 Some variations attempt to escape local optima by 
swapping points between clusters 

 



The take-home message 

D’haeseleer, 2005 

Hierarchical 
clustering 

K-mean 
clustering 

? 



What else are we missing? 



 What if the clusters are not “linearly separable”? 

What else are we missing? 




