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A quick review

" The clustering problem:

= partition genes into distinct sets with
high homogeneity and high separation

= Different representations

= Homogeneity vs Separation
= Many possible distance metrics

= Method matters; metric matters; definitions matter;

= Hierarchical clustering algorithm:

1. Assign each object to a separate cluster.

2. Find the pair of clusters with the shortest distance, e 1| R
and regroup them into a single cluster.

3. Repeat 2 until there is a single cluster.




K-mean clustering

(vs. Hierarchical clustering)



K-mean clustering

= An algorithm for partitioning n observations/points
into k clusters such that each observation belongs to
the cluster with the nearest mean/center
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= An algorithm for partitioning n observations/points
into k clusters such that each observation belongs to
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K-mean clustering: Chicken and egg

= An algorithm for partitioning n »
observations/points into k clusters such - e
that each observation belongs to the Ll
cluster with the nearest mean/center . <%

* The chicken and egg problem:

| do not know the means before | determine the partitioning into clusters
| do not know the partitioning into clusters before | determine the means
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* The chicken and egg problem:
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= Key principle - cluster around mobile centers:

= Start with some random locations of means/centers, partition
into clusters according to these centers, and then correct the
centers according to the clusters
[similar to EM (expectation-maximization) algorithms]




K-mean clustering algorithm

* The number of centers, k, has to be specified a-priori

= Algorithm:
1. Arbitrarily select k initial centers

2. Assign each element to the closest center

3. Re-calculate centers (mean position of the
assigned elements)

4. Repeat 2 and 3 until ...




K-mean clustering algorithm

* The number of centers, k, has to be specified a-priori

" Algorlthm: How can we do

. . L. this efficiently?
1. Arbitrarily select k initial centers

2. Assign each element to the closest center

3. Re-calculate centers (mean position of the
assigned elements)

4. Repeat 2 and 3 until one of the following
termination conditions is reached:

I.  The clusters are the same as in the previous iteration

ii. The difference between two iterations is smaller than a
specified threshold

iii.  The maximum number of iterations has been reached




Partitioning the space

= Assigning elements to the closest center
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Partitioning the space

= Assigning elements to the closest center
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Partitioning the space

= Assigning elements to the closest center
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Partitioning the space

= Assigning elements to the closest center
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Voronoi diagram

* Decomposition of a metric space determined by
distances to a specified discrete set of “centers” in the

space
= Each colored cell represents the collection of all points

in this space that are closer to a specific center s than

to any other center o -

= Several algorithms exist to find
the Voronoi diagram.




K-mean clustering algorithm

* The number of centers, k, has to be specified a priori

= Algorithm:
1. Arbitrarily select k initial centers

2. Assign each element to the closest center (Voronoi)

3. Re-calculate centers (mean position of the
assigned elements)

4. Repeat 2 and 3 until one of the following
termination conditions is reached:

I.  The clusters are the same as in the previous iteration

ii. The difference between two iterations is smaller than a
specified threshold

iii.  The maximum number of iterations has been reached




K-mean clustering example

= Two sets of points initial conditions

randomly generated

= 200 centered on (0,0) < 1
= 50 centered on(1,1)




K-mean clustering example

= Two points are initial conditions

randomly chosen
as centers (stars)
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K-mean clustering example

= Each dot can now
be assigned to the
cluster with the
closest center
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K-mean clustering example

= First partition into iter.max = 1 ; iterations = 1

clusters
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K-mean clustering example

= Centers are iter.max = 1 ; iterations = 1
re-calculated
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K-mean clustering example

" And are again used iter.max = 1 ; iterations = 1
to partition the
points -
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K-mean clustering example

= Second partition into

clusters
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K-mean clustering example

= Re-calculating centers
again

iter.max = 2 ; iterations = 2
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K-mean clustering example

= And we can again iter.max = 2 : iterations = 2

partition the points
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K-mean clustering example

= Third partition iter.max = 3 ; iterations = 3

into clusters
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K-mean clustering example

= After 6 iterations: iter.max = 6 ; iterations = 6

1.5

= The calculated
centers remains
stable




K-mean clustering: Summary

* The convergence of k-mean is usually quite fast
(sometimes 1 iteration results in a stable solution)

= K-means is time- and memory-efficient

= Strengths:

= Simple to use

= Fast

= Can be used with very large data sets
= Weaknesses:

* The number of clusters has to be predetermined

= The results may vary depending on the initial choice of
centers



K-mean clustering: Variations

" Expectation-maximization (EM):
maintains probabilistic assignments to clusters,
instead of deterministic assignments, and multivariate
Gaussian distributions instead of means.

= k-means++: attempts to choose better starting points.

= Some variations attempt to escape local optima by
swapping points between clusters



The take-home message
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What else are we missing?




What else are we missing?

= What if the clusters are not “linearly separable”?







