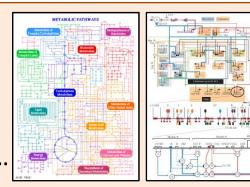
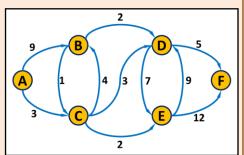
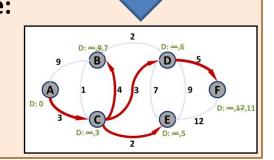
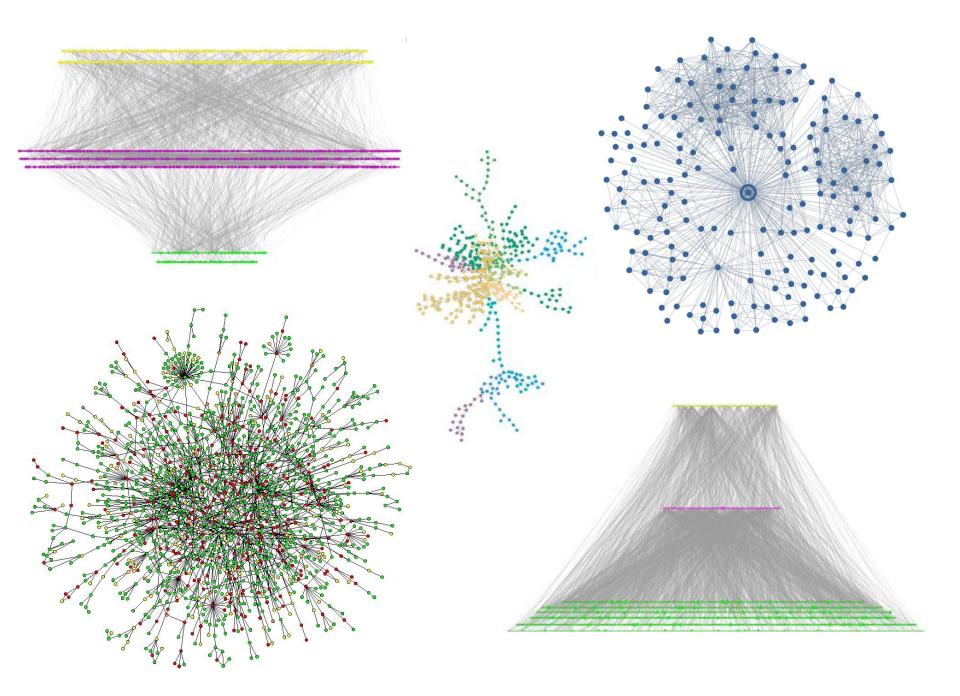
Biological Networks Analysis

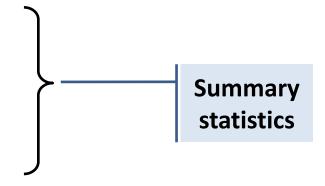

Degree Distribution and Network Motifs


Genome 559: Introduction to Statistical and Computational Genomics


Elhanan Borenstein

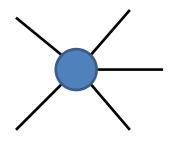

A quick review

- Networks:
 - Networks vs. graphs
 - A collection of nodes and links
 - Directed/undirected; weighted/non-weighted, ...
 - Networks as models vs. networks as tools
- Many types of biological networks
- The shortest path problem
- Dijkstra's algorithm
 - 1. Initialize: Assign a distance value, D, to each node. Set D=0 for *start* node and to infinity for all others.
 - 2. For each unvisited neighbor of the current node: Calculate tentative distance, D^t , through current node and if $D^t < D$: $D \leftarrow D^t$. Mark node as visited.
 - 3. Continue with the unvisited node with the smallest distance

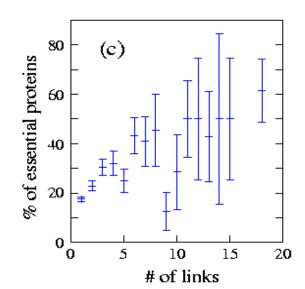


Comparing networks

- We want to find a way to "compare" networks.
 - "Similar" (not identical) topology
 - "Common" design principles


- We seek measures of network topology that are:
 - Simple
 - Capture global organization
 - Potentially "important"

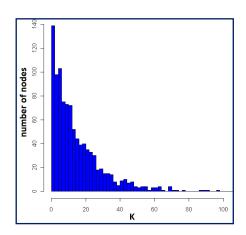
(equivalent to, for example, GC content for genomes)



Node degree / rank

Degree = Number of neighbors

- Node degree in PPI networks correlates with:
 - Gene essentiality
 - Conservation rate
 - Likelihood to cause human disease


brief communications

Lethality and centrality in protein networks

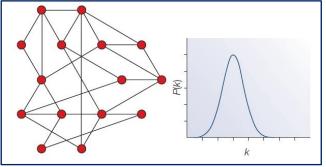
The most highly connected proteins in the cell are the most important for its survival.

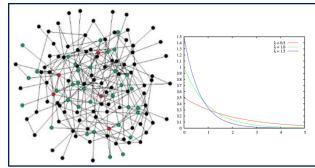
Degree distribution

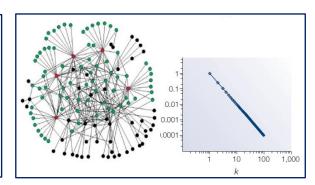
 P(k): probability that a node has a degree of exactly k

Common distributions:

Poisson:

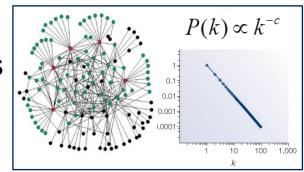

$$P(k) = \frac{e^{-d} d^k}{k!}$$


Exponential:

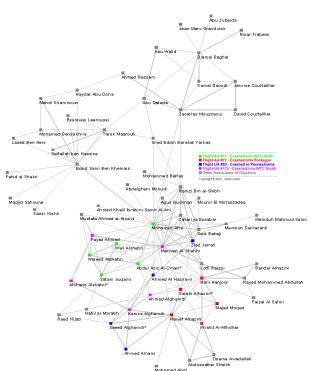

$$P(k) \propto e^{-k/d}$$

Power-law:

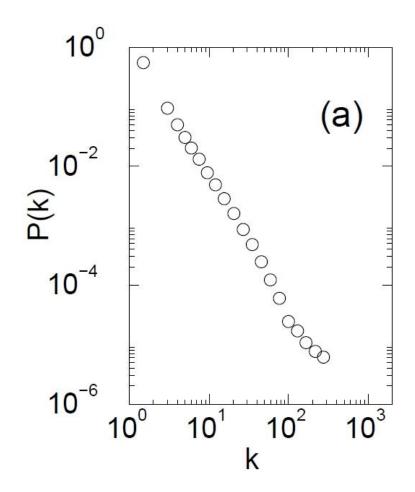
$$P(k) \propto k^{-c}, k \neq 0, c > 1$$

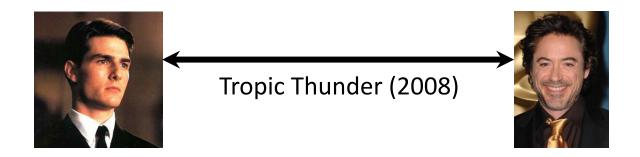


The power-law distribution


- Power-law distribution has a "heavy" tail!
 - Characterized by a small number of highly connected nodes, known as hubs
 - A.k.a. "scale-free" network

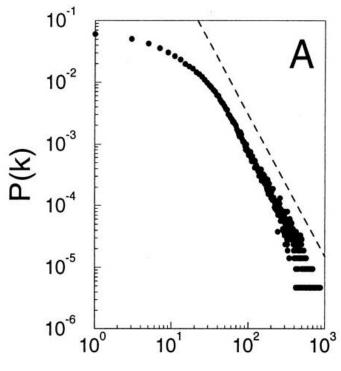
Hubs are crucial:


 Affect error and attack tolerance of complex networks (Albert et al. Nature, 2000)



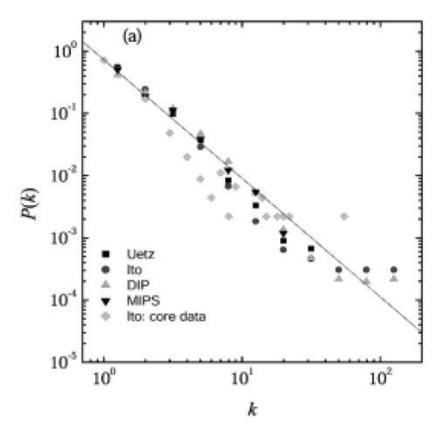
The Internet

- **Nodes** 150,000 routers
- Edges physical links
- P(k) ~ k^{-2.3}



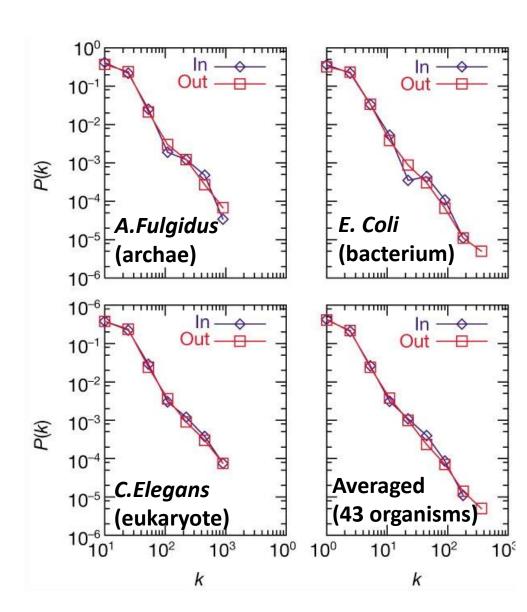
Movie actor collaboration network

- **Nodes** 212,250 actors
- Edges co-appearance in a movie


• $P(k) \sim k^{-2.3}$

Barabasi and Albert, Science, 1999

Protein protein interaction networks


- Nodes Proteins
- Edges Interactions (yeast)
- $P(k) \sim k^{-2.5}$

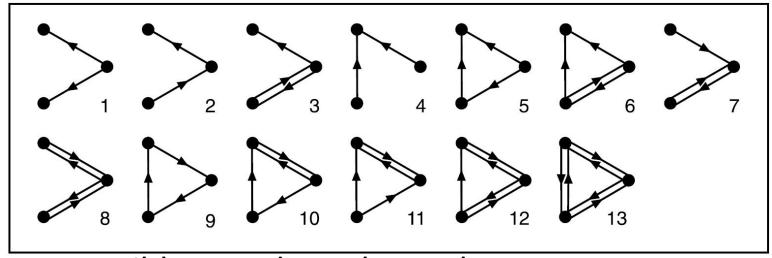
Metabolic networks

- Nodes Metabolites
- Edges Reactions
- $P(k) \sim k^{-2.2\pm2}$

Metabolic networks across all kingdoms of life are scale-free

Why do so many real-life networks exhibit a power-law degree distribution?

- Is it "selected for"?
- Is it expected by chance?
- Does it have anything to do with the way networks evolve?
- Does it have functional implications?

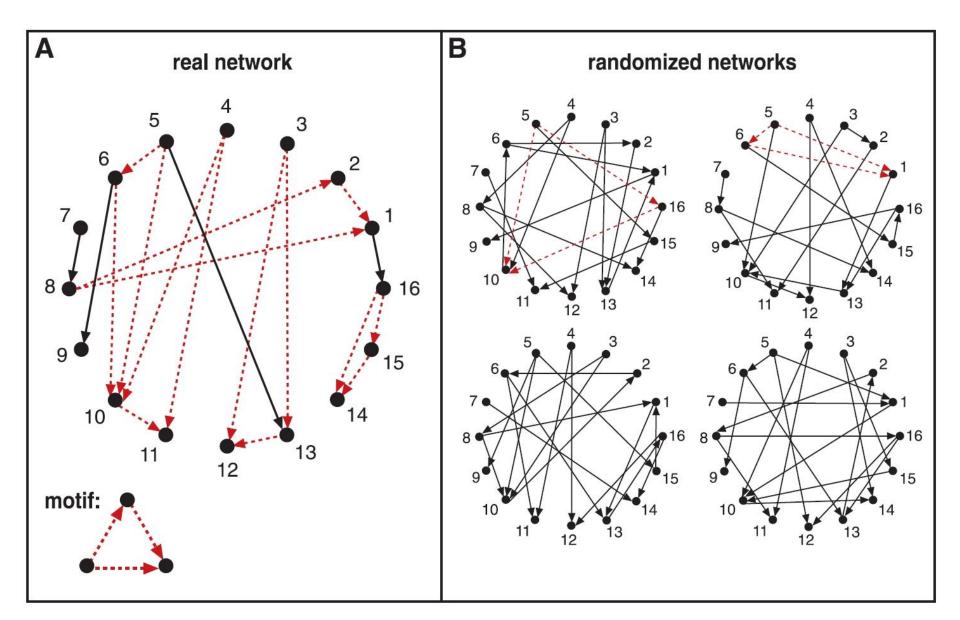


Network motifs

- Going beyond degree distribution ...
- Generalization of sequence motifs
- Basic building blocks
- Evolutionary design principles?

What are network motifs?

 Recurring patterns of interaction (sub-graphs) that are significantly overrepresented (w.r.t. a background model)



13 possible 3-nodes sub-graphs (199 possible 4-node sub-graphs)

Finding motifs in the network

- 1a. Scan all n-node sub-graphs in the *real* network
- 1b. Record number of appearances of each sub-graph (consider isomorphic architectures)
- 2. Generate a large set of random networks
- 3a. Scan for all n-node sub-graphs in random networks
- 3b. Record number of appearances of each sub-graph
- 4. Compare each sub-graph's data and identify motifs

Finding motifs in the network

Network randomization

- How should the set of random networks be generated?
- Do we really want "completely random" networks?
- What constitutes a good null model?

Network randomization

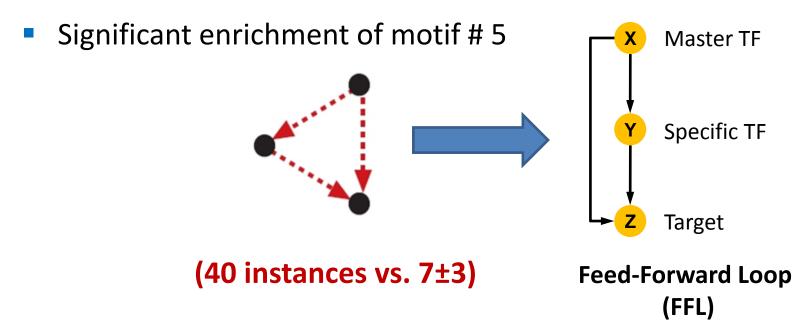
- How should the set of random networks be generated?
- Do we really want "completely random" networks?
- What constitutes a good null model?

Preserve in- and out-degree

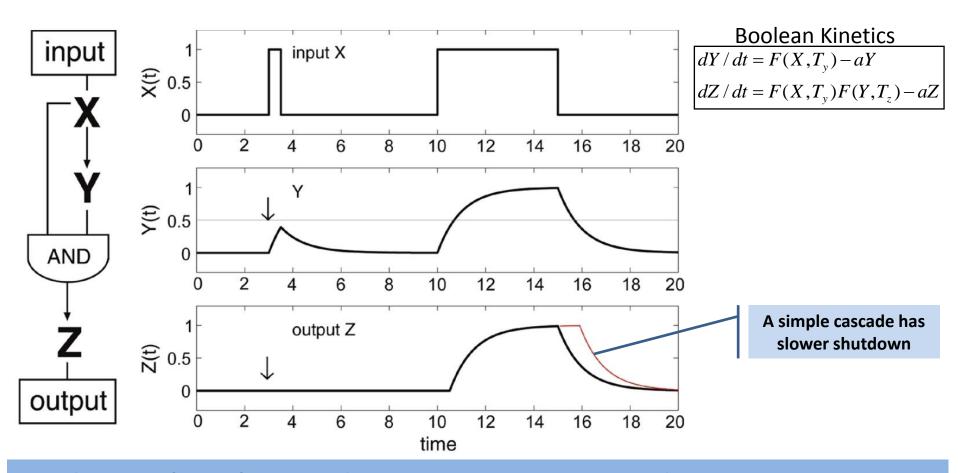
Generation of randomized networks

Network randomization algorithm:

Start with the real network and repeatedly swap randomly chosen pairs of connections (X1→Y1, X2→Y2 is replaced by X1→Y2, X2→Y1)



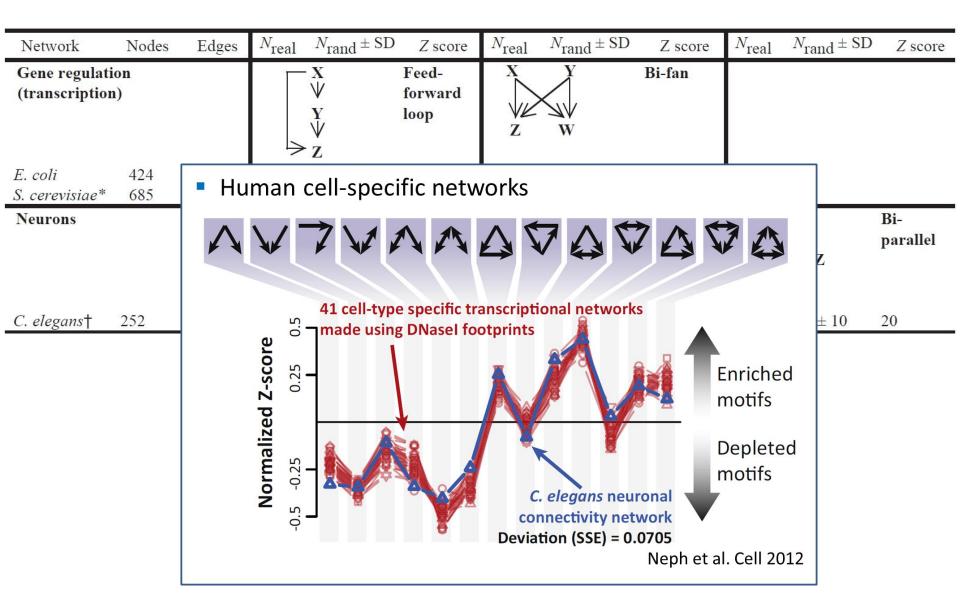
(Switching is prohibited if the either of the X1 \rightarrow Y2 or X2 \rightarrow Y1 already exist)


Repeat until the network is "well randomized"

Motifs in transcriptional regulatory networks

- E. Coli network
 - 424 operons (116 TFs)
 - 577 interactions

What's so interesting about FFLs



A coherent feed-forward loop can act as a circuit that rejects transient activation signals from the general transcription factor and responds only to persistent signals, while allowing for a rapid system shutdown.

Network	Nodes	Edges	$N_{\rm real}$	$N_{\rm rand} \pm {\rm SD}$	Z score
Gene regulation (transcription				X V Y V	Feed- forward loop
E. coli S. cerevisiae*	424 685	519 1,052	40 70	7 ± 3 11 ± 4	10 14

Network	Nodes	Edges	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{\rm rand} \pm {\rm SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score
Gene regulation (transcription			<u> </u>	X V Y V	Feed- forward loop	X	Y W	Bi-fan			
E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13			
S. cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41			

		9	NAME OF THE PARTY.			7580		3	200		
Network	Nodes	Edges	$N_{\rm real}$	$N_{\rm rand} \pm {\rm SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score
Gene regulation (transcription				Υ Υ Υ Ζ	Feed- forward loop	X	Y W	Bi-fan			
E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13			
S. cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41			
Neurons			>	Υ Υ Υ Ζ	Feed- forward loop	X	Y W	Bi-fan	Y	$\mathbb{Z}^{\mathbb{Z}}$	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20

		9	NAME OF THE PARTY.			7580		3	200		30 20
Network	Nodes	Edges	$N_{\rm real}$	$N_{\rm rand} \pm {\rm SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score
Gene regulation (transcription				Υ Υ Υ Ζ	Feed- forward loop	X	Y W	Bi-fan			
E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13			
S. cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41			
Neurons			>	Υ Υ Υ Ζ	Feed- forward loop	X	Y W	Bi-fan	Y	$\mathbb{Z}^{\mathbb{Z}}$	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20

Network	Nodes	Edges	$N_{ m real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score
Gene regulat (transcriptio			<u> </u>	X V Y V	Feed- forward loop	X	Y W	Bi-fan			
E. coli S. cerevisiae*	424 685	Why do		7 ± 3 11 ± 4	10 14	203 1812	47 ± 12 300 ± 40	13 41			
Neurons -		networks similar m		Y V Z	Feed- forward loop	X	Y W	Bi-fan	Y Y	$\mathcal{L}^{\mathbf{Z}}$	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs	netv	y is this work so ferent?		X V Y V Z	Three chain	Y	$ u^{\mathbf{Z}} $	Bi- parallel		motif is ler-repre	sented!
Little Rock Ythan St. Martin Chesapeake Coachella Skipwith B. Brook	92 83 42 31 29 25 25	984 391 205 67 243 189 104	3219 1182 469 80 279 184 181	3120 ± 50 1020 ± 20 450 ± 10 82 ± 4 235 ± 12 150 ± 7 130 ± 7	2.1 7.2 NS NS 3.6 5.5 7.4	7295 1357 382 26 181 397 267	2220 ± 210 230 ± 50 130 ± 20 5 ± 2 80 ± 20 80 ± 25 30 ± 7	25 23 12 8 5 13 32			

Information Flow vs. Energy Flow

Network	Nodes	Edges	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{ m rand} \pm m SD$	Z score
Gene regulat (transcription			>	Y V Z	Feed- forward loop	X	Y W	Bi-fan			
E. coli S. cerevisiae*	424 685	519 1,052	40 70	7 ± 3 11 ± 4	10 14	203 1812	47 ± 12 300 ± 40	13 41			
Neurons			>	Y V Z	Feed- forward loop	X	Y W	Bi-fan	Y _N	$\mathbb{Z}^{\mathbb{Z}}$	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				X	Three	2	X N	Bi-			
				Ψ Υ Ψ Z	chain	Y	$V^{\mathbf{Z}}$	parallel		motif is ler-repre	sented!
Little Rock Ythan	92 83	984 391	3219 1182	Y \(\psi \)	2.1	Y 7295 1357	V	25			sented!
DESCRIPTION TO THE PROPERTY OF THE PARTY OF			1035033311003205	\mathbf{Y} \mathbf{V} \mathbf{Z} 3120 ± 50		7295	V 2220 ± 210				sented!
Ythan St. Martin Chesapeake	83 42 31	391	1182 469 80	Y V Z 3120 ± 50 1020 ± 20 450 ± 10 82 ± 4	2.1 7.2 NS NS	7295 1357 382 26	V 2220 ± 210 230 ± 50	25 23 12 8			sented!
Ythan St. Martin Chesapeake Coachella	83 42 31 29	391 205 67 243	1182 469 80 279	Y V Z 3120 ± 50 1020 ± 20 450 ± 10 82 ± 4 235 ± 12	2.1 7.2 NS NS NS	7295 1357 382 26 181	$ \begin{array}{c} $	25 23 12 8 5			sented!
Ythan St. Martin Chesapeake	83 42 31	391 205 67	1182 469 80	Y V Z 3120 ± 50 1020 ± 20 450 ± 10 82 ± 4	2.1 7.2 NS NS	7295 1357 382 26	V 2220 ± 210 230 ± 50 130 ± 20 5 ± 2	25 23 12 8			sented!

Network Motifs in Technological Networks

Electronic ci (forward log				Υ Ψ Υ Ψ	Feed- forward loop	X	¥ W	Bi-fan	Y Y W	K Z	Pi- parallel
s15850	10,383	14,240	424	2 ± 2	285	1040	1 ± 1	1200	480	2 ± 1	335
s38584	20,717	34,204	413	10 ± 3	120	1739	6 ± 2	800	711	9 ± 2	320
s38417	23,843	33,661	612	3 ± 2	400	2404	1 ± 1	2550	531	2 ± 2	340
s9234 s13207	5,844 8,651	8,197 11,831	211 403	2 ± 1 2 ± 1	140 225	754 4445	$egin{array}{c} 1\pm 1 \ 1\pm 1 \end{array}$	1050 4950	209 264	$\begin{array}{c} 1\pm 1 \\ 2\pm 1 \end{array}$	200 200
Electronic c (digital frac	ircuits	***************************************	\$	- z	Three- node feedback loop	X	Y W	Bi-fan	X- ↑ z <		Four- node feedback loop
s208	122	189	10	1 ± 1	9	4	1 ± 1	3.8	5	1 ± 1	5
s420	252	399	20	1 ± 1	18	10	1 ± 1	10	11	1 ± 1	11
s838‡	512	819	40	1 ± 1	38	22	1 ± 1	20	23	1 ± 1	25
World Wide	Web			X V Y V Z	Feedback with two mutual dyads	X Y <	√ ⇒ z	Fully connected triad	Y <	\ \	Uplinked mutual dyad

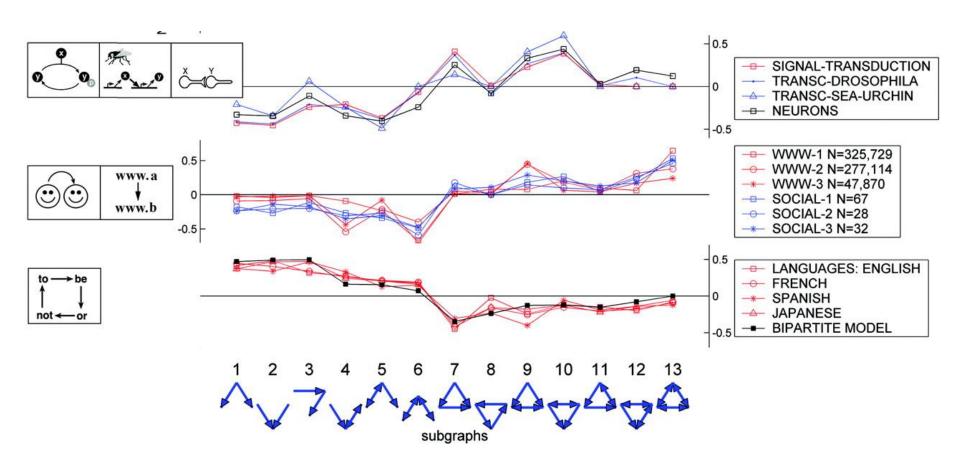
6.8e6

800

5e4±4e2

15,000

1.2e6


5000

325,729 1.46e6 1.1e5

nd.edu§

 $2e3 \pm 1e2$

Motif-based network super-families

