"A Novel Sparse Compositional Technique Reveals Microbial Perturbations"

(Published in February 12 ${ }^{\text {th }}$, 2019)

Authors: Cameron Martino, James T. Morton, Clarisse A. Marotz, Luke R.
Thompson, Anupriya Tripathi, Rob Knight, Karsten Zengler

Presenter: Itamar Curiel

A Novel Sparse Compositional Technique Reveals Microbial Perturbations

ANSCTRMP?

TL;DR

－

五

五

$$
1
$$

SPECIES	FRACTION
Bacillus Thuringiensis	0.001
Campylobacter jejuni	0.001
Staphylococcus epidermidis	0.002
\ldots	..
.	...
...	\ldots
...	...
\ldots	\ldots
\ldots	...
\ldots	\ldots
\cdots	\cdots
\ldots	\ldots
\ldots	\ldots
\ldots	\ldots
Methanobacterium extroquens	0.076
Bordetella bronchiseptica	0.076
Propionibacterium propionicus	0.122

$$
\begin{gathered}
x^{\prime}=[0.003,0.001,0.002, \ldots, 0.081,0.078,0.122] \\
\text { (species found in this sample) } \\
x=[0.003,0,0,0,0.001,0,0.002, \ldots, 0.122,0,0] \\
\text { (all species) }
\end{gathered}
$$

- All non-negative!
- Values add up to 1 !
- May contain zeros!

The Problems

- High-dimensionality - our vectors are long
- Compositionality - if one species goes up, the rest go down
o Non-normality - lack of a good "anchor" species/sample to fix compositionality
- Sparsity - lots of Os in our data
- Because species does not exist
- Because species exists in small amounts and we undersampled
- Because there's too much of the other species
- Because of an error in the process
- Some species are very impactful even in small amounts

Example

Taxon 1 starts very low but increases exponentially over time
Taxon 2 starts high and remains there, stable
Taxon 3 starts high and remains there, but very unstable
We want to notice the trend of Taxon 1 increasing!

Example

Example

Example

- Taxon 1
 - Taxon 2
 - Taxon 3

Aitchison

$$
\begin{gathered}
\sqrt{\sum_{k=1}^{d}\left(\log \frac{x_{k}}{g(x)}-\log \frac{y_{k}}{g(y)}\right)^{2}} \\
g(x)=\sqrt[\mathrm{d}]{\prod_{k=1}^{d} x_{k}}
\end{gathered}
$$

Aitchison

$$
\begin{gathered}
\sqrt{\sum_{k=1}^{d}\left(\log \frac{x_{k}}{g(x)}-\log \frac{y_{k}}{g(y)}\right)^{2}} \\
g(x)=\sqrt[\mathrm{d}]{\prod_{k=1}^{d} x_{k}}
\end{gathered}
$$

- Scale invariant!
- Perturbation invariant!
- Permutation invariant!
- Subcompositional dominant!

Aitchison

- Scale invariant!
- Perturbation invariant!
- Permutation invariant!
- Subcompositional dominant!
- IIIIIIIIII

$$
\begin{gathered}
\sqrt{\sum_{k=1}^{d}\left(\log \frac{x_{k}}{g(x)}-\log \frac{y_{k}}{g(y)}\right)^{2}} \\
g(x)=\sqrt[\mathrm{d}]{\prod_{k=1}^{d} x_{k}}
\end{gathered}
$$

\rightarrow Fits all four requirements suggested by.... Dr. John Aitchison... [?

CLR transform - Centered Log Ratio transform

$$
\begin{gathered}
\text { distance }=\sqrt{\sum_{k=1}^{d}\left(\log \frac{x_{k}}{g(x)}-\log \frac{y_{k}}{g(y)}\right)^{2}} \\
g(x)=\sqrt[{\mathrm{d} \sqrt{\prod_{k=1}^{d} x_{k}}=e^{\left(\frac{1}{d} \sum_{k=1}^{d} \log x_{k}\right)}=e^{\overline{\log x}}}]{l}
\end{gathered}
$$

CLR transform - Centered Log Ratio transform

$$
\begin{gathered}
\text { distance }=\sqrt{\sum_{k=1}^{d}\left(\log \frac{x_{k}}{g(x)}-\log \frac{y_{k}}{g(y)}\right)^{2}}=\sqrt{\sum_{k=1}^{d}\left(\operatorname{clr}\left(x_{k}\right)-\operatorname{clr}\left(y_{k}\right)\right)^{2}} \\
g(x)=\sqrt[{\mathrm{d} \sqrt{\prod_{k=1}^{d} x_{k}}=e^{\left(\frac{1}{d} \sum_{k=1}^{d} \log x_{k}\right)}=e^{\overline{\log x}}}]{\substack{\operatorname{lr}\left(x_{k}\right)=\log \frac{x_{k}}{g(x)}=\log x_{k}-\log g(x)=\log x_{k}-\overline{\log x} \\
\operatorname{clr}(x)=\log x-\overline{\log x}}}
\end{gathered}
$$

CLR transform - Centered Log Ratio transform

$$
\begin{gathered}
\text { distance }=\sqrt{\sum_{k=1}^{d}\left(\log \frac{x_{k}}{g(x)}-\log \frac{y_{k}}{g(y)}\right)^{2}}=\sqrt{\sum_{k=1}^{d}\left(\operatorname{clr}\left(x_{k}\right)-\operatorname{clr}\left(y_{k}\right)\right)^{2}} \\
g(x)=\sqrt{\prod_{k=1}^{d} x_{k}}=e^{\left(\frac{1}{d} \sum_{k=1}^{d} \log x_{k}\right)}=e^{\overline{\log x}} \\
\operatorname{clr}\left(x_{k}\right)=\log \frac{x_{k}}{g(x)}=\log x_{k}-\log g(x)=\log x_{k}-\overline{\log x} \\
\operatorname{crr}(x)=\log x-\overline{\log x}
\end{gathered}
$$

But wait, what about zeros...?

$$
\log (0)=\text { undefined }
$$

- just ignore them
- ignore them when calculating geometric mean / logarithmic average
- ignore them when calculating CLR
- call it "Robust CLR" - rCLR

$$
g_{r}(x)=\sqrt[\left|\Omega_{x}\right|]{\sqrt{\prod_{k \in \Omega_{x}}^{\left|\Omega_{x}\right|}} x_{k}} \quad \operatorname{rclr}\left(x_{k}\right)=\log \frac{x_{k}}{g_{r}(x)} \ldots \text { or undefined if } x_{k}=0
$$

...Okay, but...we still have undefineds in our data

- Pretend that they're missing values!
- Reconstruct the vectors as if these species' data is missing
- This is called "Matrix Completion"
(where each column in the matrix is a different sample vector)

$$
\left(\begin{array}{lllll}
1 & ? & ? & 4 & ? \\
? & 2 & 5 & ? & ? \\
? & ? & 4 & 5 & ? \\
5 & ? & ? & ? & 4
\end{array}\right)
$$

NETFLIX

"sample loading"
"feature loading"

our matrix

In the paper, the matrix completion algorithm that was applied is called OptSpace:

$$
\text { optimize for } \min _{U, V}\left(\left|Y-U S V^{T}\right|_{2}^{2}\right) \text { (not including new entries) }
$$

Summary

1. Transform our samples with the Robust Centered Log Ratio transform
2. Put all of the samples in a matrix, side by side
3. Run Matrix Completion
4. Result 1: a new complete matrix, representing what we "should see"
5. Result 2: two smaller matrices U and V , which represent important features and important samples
Now we can finally calculate distances between vectors in this matrix!
But instead of doing that, we'll do Ordination - Principal Component Analysis.

PCA - Principal Component Analysis

- PCA is when you try to find order in your chaos
- You search for components (e.g. groups of species) that explain the data, name them PC1, PC2, PC3, etc. in order of how much they each explain variance in the data, and then make a graph that shows how right you are
- Usually, only PC1 and PC2 are shown, because 2D graphs are easy
- Each axis represents a component of the data that explains the difference, and has a percentage number showing how much it does
- We want percentages to be high in each axis, relative to what's left to explain (after using the other axes)

Example

Results

Sponges
Sleep Apnea

Results

- Robust Aitchison - Generalized UniFrac $\alpha=1.0$ - Bray-Curtis

Sponges

Sleep Apnea

Results

D Positive Control Simulation

Features

PC1 (49\%)

Results

Potential problems - high-rank matrices!

sOTUs

sOTUs

Paper suggests to only use with rank 2-3, for ≤ 100 samples

Conclusion

- Using Aitchison distance (with CLR transformation) is very good
- Using "robustness" and then matrix completion is pretty good on datasets where the rank is expected to be low
- Not good for "gradient-like" datasets, with a high-rank structure. It might cause misleading results
- Overfitting is possible but unlikely if we keep to low ranks (2-3)
(also the code for this is open-source, as usual)

Discussion Points

- Is this usually useful? Do many data sets actually have a low rank?
- All of the results are on small datasets and subsets of datasets, with a small amount of samples. Does this still work with very large sample sizes? Is it computationally slow?
- Why does matrix completion work so well on zeros? It feels like dark magic.

The End

