Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota (2013)

BY:RICHARD R. STEIN 1 * . , VANNI BUCCI 1 * . , NORA C. TOUSSAINT 2 BUFFIE 2 , GUNNAR RÄTSCH 1 , ERIC G. PAMER 2 , CHRIS SANDER 1 , JOÃO B. XAVIER 1 *

COMPRESENTERING INSTITUT
SLOAN-KETTERING CANCER CENTER, NEW YORK, NEW YORK, UNITED

Outline

- Microbial effects on human health
- Previously shown methods and their shortcomings
- Overview of new method
- Results
- Discussion

Intestinal microbiome: Friend or foe

Diseases. 2018 Sep; 6(3): 56.

Published online 2018 Jun 29. doi: 10.3390/diseases6030056

Gut Microbiome and Cardiovascular Diseases

Naofumi Yoshida, <u>Tomoya Yamashita,</u>* and <u>Ken-ichi Hirata</u>

Luis Vitetta, Academic Editor

► Author information ► Article notes ► Copyright and License information <u>Disclaimer</u>

This article has been cited by other articles in PMC.

Analysis of the relationship between the gut microbiome and dementia: a cross-sectional study conducted in Japan

Naoki Saji [™], Shumpei Niida, Kenta Murotani, Takayoshi Hisada, Tsuyoshi Tsuduki, Taiki Sugimoto,

Ai Kimura, Kenji Toba & Takashi Sakurai

Review Article | Published: 06 March 2019

The microbiome, cancer, and cancer therapy

Beth A. Helmink, M. A. Wadud Khan, Amanda Hermann, Vancheswaran Gopalakrishnan & Jennifer A. Wargo 🔀

PMCID: PMC6164700 of Deaths by Cause

PMID: 29966270

Gut Microbes. 2015; 6(2): 85-92.

Published online 2015 Apr 22. doi: 10.1080/19490976.2015.1024918

Type 2 diabetes and gut microbiome: at the intersection of known and unknown

Smitha Upadhyaya* and Gautam Banerjee

► Author information ► Article notes ► Copyright and License information <u>Disclaimer</u>

This article has been $\underline{\text{cited by}}$ other articles in PMC.

Front Microbiol. 2018; 9: 2147.

Published online 2018 Sep 19. doi: 10.3389/fmicb.2018.02147

Diet, Microbiota and Gut-Lung Connection

Swadha Anand and Sharmila S. Mande

▶ Author information ▶ Article notes ▶ Copyright and License information <u>Disclaimer</u>

This article has been cited by other articles in PMC.

PMCID: PMC615652

PMCID: PMC4615359

PMID: 25901889

PMID: 3028341

Nature Medicine **25**, 377–388 (2019) │ Download Citation **±**

The methods discussed thus far

A: Current Analysis

Cross-sectional analysis

Pre perturbation

PC1 (0.60)

- (Unifrac, Bray–Curtis, Euclidean)
- + Diversity Indices (Shannon, Chao,...)
- + Community Similarity Time Decay
- + Co-occurance (correlation) networks
- Exclusively correlative (non-directional) inference of interaction
- No predictive power
- Limited to a single time-frame

Static analyses

Microbes are alive

The microbiome is highly dynamic, effected by various factors:

- Diet
- Competition
- Drugs
- Infections

Lotka-Volterra Predator-prey model (1910)

Modelling an ecological community

$$\frac{d}{dt}x_{i}(t) = \mu_{i}^{\frac{d}{dt}x_{i}(t)} + x_{i}(t) \sum_{j=1}^{L} M_{ij}x_{j}(t) + x_{i}(t) \sum_{l=1}^{P} \varepsilon_{il}v_{l}(t)$$

Converting continuous to discrete

$$\frac{\Delta \ln x_i(t_k)}{\Delta t_k} = \mu_i + \sum_{j=1}^{L} \frac{\Delta t_n}{M_{ij} x_j(t_k)} + \sum_{l=1}^{P} \varepsilon_{il} v_l(t_k)$$

Estimating parameters with regularized regression

$$\min \left\| (M \mu E) Y - F \right\|_{2}^{2} + \lambda_{M} \left\| M \right\|_{2}^{2} + \lambda_{\mu} \left\| \mu \right\|_{2}^{2} + \lambda_{E} \left\| E \right\|_{2}^{2}$$

K-Fold cross validation

Shown with k=5, authors used k=3

Mouse experiment

Infect Immun. 2012 Jan; 80(1): 62-73.

doi: 10.1128/IAI.05496-11

PMCID: PMC3255689

PMID: 22006564

Profound Alterations of Intestinal Microbiota following a Single Dose of Clindamycin Results in Sustained Susceptibility to *Clostridium difficile*-Induced Colitis

<u>Charlie G. Buffie</u>, ^{a,b,c} <u>Irene Jarchum</u>, ^{a,b,c} <u>Michele Equinda</u>, ^{a,c} <u>Lauren Lipuma</u>, ^{a,b,f} <u>Asia Gobourne</u>, ^{a,b,f} Agnes Viale, ^e Carles Ubeda, ^{a,c} Joao Xavier, ^{b,d} and Eric G. Pamer ^{⊠a,b,c}

B. A. McCormick, Editor

Author information Article notes Copyright and License information Disclaimer

This article has been cited by other articles in PMC.

3 mice groups:

- Administration of Clostridium difficile, a bacterial pathogen.
- Administration of Clindamycin, an antibiotic.
- Administration of Clindamycin, followed by an administration of C. difficile the day after.

Effects of Clostridium difficile

Effects of Clindamycin

und. Enterobacteriaceae

Blautia

Barnesiella

und. uncl. Mollicutes

und. Lachnospiraceae

Akkermansia

Clostridium difficile

uncl. Lachnospiraceae

Coprobacillus

Enterococcus

Other

Effects of Clindamycin + Clostridium difficile

Predictive power

The interplay between microbial taxa

Current shortcomings and possibilities for improvement

- Currently tested with absolute data only (antibiotically treated to extinction).
- Only supports with pairwise, second order interactions.
- Currently only works with roughly estimated and transformed count data
- Works in a rough genus-level resolution and includes only the most common of those
- More specific and gradual experimental data for empirical modeling of specific effects

Discussion

- What is the best possible way to improve the current method (whether it's a model improvement, addition, data consideration)?
- Are you more averse to antibiotic treatment after seeing the results of the experiment