Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning (LSA)

Brian Cleary^{1,2}, Ilana Lauren Brito^{2,3,4}, Katherine Huang², Dirk Gevers², Terrance Shea², Sarah Young², and Eric Alm^{2,3,4}

Nature Biotechnology, October 2015

- 1- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- 2- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- 3- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- 4- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Dan Coster, 12/06/19

E-Mail: Dancoster@gmail.com

Talk Outline

- Background
- Motivation
- LSA Latent Strain Analysis
- Results
- Pros & cons
- Discussion

The Challenge

Detection of Low abundance species Separate strains of the same species

(Using commodity hardware)

The Challenge

MetAMOS, MetaVelvet, Meta-IDBA

Relaxing the assumption of single-genome de-Bruign assemblers to allow multiple coverage

Cons: can't scale to terabytes data sets

Ray Meta

> Leverage distributed architectures to parallelize assembly computation

Terabyte

Gigabyte

Megabyte

Diginorm & Khmer

>A combination of data reduction + data compression + partioning

Cons: (1) Multiple small contigs (2) It's not clear which contigs originate from the same species

100-200 Gb per student

2500^{2,400}Gb 2,150 Gb 2000 1500 500 Gb 490 Gb 1000 **500** 0 Adi Rani Tal Ron Shamir Elkon Pupko Stern

RAM

LSA – Latent Strain Analysis: High Level Description

A scalable 'de novo' **pre-assembly method**, that **separate reads into biological informed partition** and thereby **enables assembly of individual genomes**

Let's assume that the Relative Abundance of Prevotellacea can be explained by a finite set of 5 reads

Main Assumption "The variance of a given species' abundance across samples imparts a covariance to the read depth at <u>every read</u> in that species' genome"

Reads transformation: From Read to K-mer

K-Mer - All the possible substrings of length k that are contained in a read

 K=4
 { 1 , 2 , 1 , 1 , 1 , 1 }

 ACTCTCTGAT
 {ACTC, CTCT, TCTC, TCTG, CTGA, TGAT}

Assumption: The observed frequency of every k-mer in a sample is a function of the abundance of each distinct DNA fragment (read) containing that k-mer

A vector of k-mer counts (K=33 bp)

Reads transformation: K-mer hashing & Normalization Hashing! K = 33 4^{33} optional K-mers! $O(10^{19})$ $4^{33} \rightarrow 2^{31} O(10^9)$

Main
AssumptionThe variance of a given species' abundance across
samples imparts a covariance to the read depth at

every K-mer in that species' genome"

Abundance

Matrix

	Sample	Hash1	Hash2	Hash3	•••	Hash 2B	
TF-IDF	Sample1	0.1	0.28	0.75		0.4	
Normalization	Sample2	0.3	0.12	0.23		0.2	
('global weight')	Sample3	0.7	0.45	0.09		0.014	

Claim: It is always possible to decompose A real matrix A to $A = U\Sigma V^{T}$:

- I. U, Σ , V unique
- II. U, V column orthonormal $(U^T U = V^T V = I)$
- III. Σ diagonal and its entries (singular values) are positive and sorted in decreasing order ($\sigma_1 \ge \sigma_2 ... \ge 0$) while **r** is the rank of matrix A.

Dimensionality Reduction : Eigengenomes ? $A = U \times \Sigma \times V^{T}$

<u>Eigengenome</u> - Analog to the Principle Component of the sequence space. (the columns of *V* collectively as the set of eigengenomes).

Reads' Clustering: K-mers clustering

Reads' Clustering: From k-mers cluster to reads

log-likelihood:

- The <u>size</u> of each of the k-mer clusters
- The <u>intersection</u> of the k-mers in the read with each of the clusters
- The <u>global weight</u> of each of the intersecting k-mers

Unique read in each cluster

Assembly: From reads' clustering to assembly

<u>Question</u>: Can <u>LSA</u> partition mock reads from <u>single genome</u> mixed with other genomes?

Test: 30 human gut samples + 'Salmonella Bongori' mock reads

Human Microbiome Project

<u>Result:</u>

- LSA produced 451 partitions using 25 Gb
- Out of a total of ~20 million spiked 'S. bongori' reads, more than 99% ended up in a single partition.

<u>Question</u>: Can <u>LSA</u> Separate reads from <u>closely related strains</u> into different partitions?

<u>**Test:</u></u> 50 human gut samples + 2 strains of 'S. Bongori'** mock reads + 8 strains of **'S. Enterica'** mock reads</u>

<u>Accuracy</u> - percentage of partition's assembly covered by reads simulated from a given reference genome (RG).

<u>**Completeness</u>**- percentage of a given reference genome covered by each partition .</u>

- > LSA produced **2,543 partitions, 'S. bongori'** partition:
 - > Accuracy = 99.52% (of the reads are from 'S. bongori')
 - > Completness = 95.79% (of all the 'S. bongori' reads)

near perfect separation!

Inner Rings

Partitior Partitior MSA Partition S. ent. He §: €nŧ: ₩ **§: ent: fe** S. ent. Ty

S. ent. So

Results: Low Abundance Species

<u>Question</u>: Can assembled partitions can be aligned to reference genomes?

<u>Test:</u> 176 human stool samples from FijiCoMP (4 Tb)

Completeness – assessed by by AMPHORA set (31 house keeping genes) **N50** - the minimum contig length needed to cover 50% of the assembled genome

<u>Result:</u>

- LSA produced 4,306 partitions
- Considering only contigs greater in length than the N50 of a given partition == 344 partitions which are relative specific (>50% of total alignment)

Results: Low Abundance Species

MetaPhyler – a taxonomic classifier uses phylogentic marker genes.

Result:

> Out of 344 partitions, 93 contains all 31 AMPHORA genes.

 \succ 16s sequencing detected >70 bacterial families with low abundance (4 \times 10^{-6%})

Most Enriched Families

Results: Memory Consumption

Results: Memory

streaming SVD - **Gensin** packge (python) operates in fixed memory

Pipeline Step	Number of tasks	Time per task (brs)	RAM / task	(1) 176 samples	(2) 32 samples	(3) 18 samples	(1) 4Tb	(2) 300Gb	(3) 20Gb
Hyperplane Hashing	number of reads / 1m	1.2	3Gb	17516	3184	561	3Gb	3Gb	3Gb
Hashed K-mer Counting	number of samples	2	4Gb	176	32	18	4Gb	4Gb	2Gb
Global K-mer Weighting	1	1.7	25Gb	1	1	1	25Gb	25Gb	12Gb
K-mer Abundance Matrix	number of samples	0.45	32Gb	176	32	18	32Gb	32Gb	16Gb
Streaming SVD	1	*	4Gb	1	1	1	4Gb	4Gb	2Gb
K-mer ClusterIndex	1	24	1Gb	1	1	1	1Gb	1Gb	1Gb
K-mer ClusterMap	k-mer hash size / $1 \mathrm{m}$	2.2	1Gb	2148	2148	1074	1Gb	1Gb	1Gb
K-mer ClusterReduce	1	1.1	50Gb	1	1	1	50Gb	50Gb	25Gb
Read Partitioning	number of reads / 1m	6.2	1Gb	17516	3148	561	1Gb	1Gb	1Gb
	General computational requirements			Number of tasks per collection			Peak memory use per collection		

Pros & Cons

• Pros:

• Open Source

• Cons:

- Tables / Figures mismatch
- No comparison to other methods
- One data set
- Fancy algorithm, compare to random?

• Pros:

- Fixed Memory
- Integration of concepts

Discussion

- Validation of novel & specific new computational methods
- Article name Vs. its actual value?

Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning (LSA)

Thanks!