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Abstract

This paper presents a new mechanism to enhance the evolutionary process of autonomous agents through
lifetime adaptation by imitation. Imitation is a common and effective method for learning new traits and is
naturally applicable within the evolutionary paradigm. We describe a set of simulations where a population
of agents evolve to solve a certain task. In each generation, individuals can select other agents from the
population as models (teachers) and imitate their behavior. In contradistinction to previous studies, we focus
on the interaction between imitation and evolution when imitation takes place only across members of the
same generation, and does not percolate across generations via vertical (cultural) transmission. We show how
this mechanism can be applied to successfully enhance the evolution of autonomous agents, when other forms
of learning are not possible.

1 Introduction

A large body of work in recent years has studiedthe in-
teraction between lifetime learning and genetic evolution
when lifetime adaptations, acquired by learning, are not
inherited. Hinton and Nowlan (1987) introduced a sim-
ple model that demonstrates how learning can guide and
accelerate evolution. Nolfi et al. (1994) presented exper-
imental results confirming that this assumption is valid,
even when the learning task differs from the evolution-
ary task. Other researchers (Nolfi and Parisi, 1997; Flore-
ano and Mondada, 1996) studied the interaction between
learning and evolution in robots and artificial agents sys-
tems. These studies employed various sources of training
data such as external oracles, regularities in the environ-
ment or ”self-generated” teaching data. There is, how-
ever, an additional source of training data; one which is
naturally available within the evolutionary paradigm - the
knowledge possessed by other members of the popula-
tion. This knowledge can be harnessed to improve the
evolutionary process in the form oflearning by imitation.

The motivation for using learning by imitation to en-
hance evolution is twofold. First, it is one of the most
common methods for learning in nature. Living or-
ganisms (not to say humans) often imitate one another
(Kawamura, 1963; Meltzoff, 1996; Whiten and Ham,
1992). Imitation is an effective and robust way to learn
new traits by utilizing the knowledge already possessed
by others. Second, while oracles or other forms of su-
pervised training data are scarce in agent environments,
learning by imitation is still a valid option, using other
members of the population as teachers.

Extending these studies further,our goal is to put for-
ward a novel framework for merging these two ap-
proaches and study learning by imitation within the

scope of the interaction between learning and evolu-
tion. We wish to explorelearning by imitationas an al-
ternative to conventional supervised learning and to apply
it as a tool to enhance genetic evolution. We will label
this framework asimitation enhanced evolution (IEE).

Learning by imitation has already been applied by
researchers in the fields of artificial intelligence and
robotics in various experiments. Hayes and Demiris
(1994) presented a model of imitative learning to develop
a robot controller. Billard and Dautenhahn (1999) studied
the benefits of social interactions and imitative behavior
for grounding and use of communication in autonomous
robotic agents. Furthermore, various frameworks that
study the interaction between cultural transmission and
evolution have already been well established (e.g Boyd
and Richerson, 1985; Cavalli-Sforza and Feldman, 1981;
Laland, 1992). Gene-culture coevolution accounts for
many adaptive traits (Feldman and Laland, 1996). Studies
and simulations of the evolution of language (Ackley and
Littman, 1994; Kirby and Hurford, 1997; Arbib, 2001)
assume, by definition, some sort of cultural transmission.

It is important to realize though, thatin contradis-
tinction to these studies, our framework does not em-
ploy cultural evolution. In fact, we preclude culture from
evolving in the first place.Following the footsteps of the
studies of the interaction between learning and evolu-
tion cited above, we thus avoid any form of acquired-
knowledge transfer between generations either geneti-
cally or culturally . We work in a strict Darwinian frame-
work, where lifetime adaptations are not inherited and
may affect the evolutionary process only by changing the
individual’s fitness, and thus the number of its offsprings1.

1Although, as demonstrated in some of the studies cited above, ac-
quired traits may be genetically assimilated through the Baldwin effect
(Baldwin, 1896).



In terms of cultural transmission (see Boyd and Richer-
son, 1985, for a detailed definition), we allowhorizontal
transmission alone (where individuals of the same gener-
ation imitate each other) and exclude any form ofvertical
transmission (where members of the current generation
transmit their knowledge to members of the next gener-
ation). Numerous field studies suggest that at least in
nonhuman societies, horizontal transmission is far more
common than vertical transmission (Laland, 1992).Fur-
thermore, to prevent any form of cultural evolution
from taking place, within each generation, only innate
behaviors are imitated; that is, we prevent behaviors ac-
quired by imitation to be imitated again by another mem-
ber.

A simple model that fits this framework has been stud-
ied before by Best (1999). He demonstrated an exten-
sion of the computational model presented in Hinton and
Nowlan (1987), introducing social learning (namelyim-
itation) as an additional adaptive mechanism. The re-
ported results exemplify how horizontal cultural transmis-
sion can guide and accelerate the evolutionary process in
this simplified model. Best has also demonstrated how
social learning may be superior to conventional learning
and yield faster convergence of the evolutionary process.
However, Best’s model has several limitations. The evo-
lutionary fitness function (which is the one used in Hin-
ton and Nowlan, 1987) represents a worst-case scenario
where only the exact solution has a positive fitness value.
There is no probable path that a pure evolutionary search
can take to discover this solution. Additionally, there is no
distinction between genotypes and phenotypes and thus
no realphenotypicadaptation process. Imitation is carried
out simply by copying certaingenesfrom the teacher’s
genome to the student.

We wish to generalize this framework and study
the effects of learning by imitation in a more realis-
tic scenario of autonomous agents evolution(see Rup-
pin, 2002, for a general review). We focus on the effects
that imitation may have on the genetic evolutionary pro-
cess, starting with the most basic question:can imitation
enhance the evolution of autonomous agents (in the ab-
sence of vertical transmission), in an analogous manner
to the results previously shown for supervised learning,
and how?The contribution of imitation to evolution is not
obvious; while in late stages of the evolutionary process
the best agents may already possess sufficient knowledge
to approximate a successful teacher, in early stages of the
process it may be the case of “the blind leading the blind”,
resulting in a decrease of the population’s average fitness.

This paper presents a set of simulations, where life-
time learning by imitation was used to adapt individuals
that go through an evolutionary process. The results are
compared with those of a simple evolutionary process,
where no lifetime learning is employed, and with those
of an evolutionary process that employs conventional su-
pervised learning.

The remainder of this paper is organized as follows. We
begin in Section 2 with a brief overview of the effect of
lifetime adaptation on the evolutionary process. In Sec-
tion 3 we present theIEE model in details. To validate
the effectiveness of our model we introduce in Section 4
a set of tasks which were used to test our model and the
experimental results in Section 5. The paper concludes
with a discussion of future work and a short summary.

2 The Effects of Lifetime Adapta-
tion on Genetic Evolution

Studies of the interaction between lifetime learning and
evolution (Hinton and Nowlan, 1987; Nolfi et al., 1994;
Nolfi and Parisi, 1997; Floreano and Mondada, 1996)
have shown that learning can accelerate and guide the ge-
netic evolutionary process. These studies demonstrated
(through both theoretical analysis and simulations) how
the dynamicsof the lifetime adaptation process can ac-
count for this positive effect. The phenotypic modifica-
tions that take place in an individual subject to lifetime
adaptation (e.g. learning), significantly depend upon its
innate configuration. Individuals which initially have a
low fitness value, may attain higher fitness through learn-
ing. The expected fitness gain though, will be higher
for individuals which are initially closer to the optimum
configuration. As illustrated in Figure 1, learning can
thus help to reveal the innate potential of each individ-
ual in the population. One may consider lifetime adapta-
tion as a local search process that can enhance the global
search (evolution) by determining which configurations
lie in the vicinity of the global optimum solution and are
thus worthwhile retaining in the population (as they have
a better chance to produce successful offsprings). From a
mathematical standpoint, lifetime adaptation can be con-
ceived as afunctional that can potentially transform an
initially ragged fitness function into a smoother function,
making the evolutionary process more effective.

Our hypothesis is that learning by imitation, that is, us-
ing the best individuals in the population as teachers, may
be sufficient to reveal the innatepotentialof the popula-
tion members. The results reported in the following sec-
tions clearly validate this assumption.

In this study we focus on the simple case when the
learning (imitation) task is similar to the evolutionary
task. This case most probably does not closely represent
the imitation processes found in nature. Lifetime adap-
tation in humans and other cultural organisms operates
on high-level traits which are not coded directly in their
genome. However, we believe that this simple scenario
can provide valuable insights into the roots of imitative
behavior. We further discuss this topic in Section 6.



Figure 1: An illustration of the effect that lifetime adapta-
tion may have on the genetic evolutionary process. Both
agents start with the same innate fitness value (indicated
by the black dots). Applying lifetime adaptation (illus-
trated as a simple hill climbing process) will result in the
selection of agent A which is closer to the optimal solu-
tion. Inspired by Nolfi and Floreano (1999)

3 The Model

A haploid population of agents evolve to solve various
tasks. Each agent’s neurocontrollers is a simple feed-
forward (FF) neural network (Hertz et al., 1991). The
initial weights of the network synapses are coded directly
into the agent’s genome (the network topology is static
throughout the process). The initial population is com-
posed of 100 individuals, each assigned randomly se-
lected connection weights from the interval [-1,1]. The
innate fitnessof each individual is determined according
to its ability to solve the specific task upon birth. Within
the pure evolutionary process, the innate fitness will deter-
mine the reproductive probability of this individual. Each
new generation is created by randomly selecting the best
agents from the previous generation according to their in-
nate fitness, and allowing them to reproduce (Mitchell,
1996). During reproduction, 10% of the weights are mu-
tated by adding a randomly selected value from the inter-
val [-0.35,0.35]. The genomes of the best 20 individuals
are copied to the next generation without mutation.

When conventional supervised learning is applicable
(i.e., an explicit oracle can be found) we also examined
the effect of supervised learning on the evolutionary pro-
cess. Each individual in the population goes through a
lifetime learning phase where the agent employs a back-
propagation algorithm (Hertz et al., 1991), using the ex-
plicit oracle as a teacher. Its fitness is then reevaluated to
determine itsacquired fitness(i.e., its fitness level after
learning takes place). In order to simulate the delay in fit-
ness acquisition associated with acquired knowledge, we
use the average of the innate and acquired fitness values
as the agent’sfinal fitnessvalue. This fitness value is then
used to select the agents that will produce the next gener-
ation.

In the IEE paradigm, agents do not use conventional
supervised learning, but rather employ learning by imita-
tion. In every new generation of agents, created by the
evolutionary process, each agent in the population selects
one of the other members of the population as an imitation
model (teacher). Teachers are selected according to their
innate fitness(i.e., their initial fitness levels before learn-
ing takes place). The agent employs a back-propagation
algorithm, using the teacher’s output for each input pat-
tern as the target output, mimicking a supervised learning
mode. The imitation phase in each generation can be con-
ceived as happening simultaneously for all agents, pre-
venting behaviors acquired by imitation from being imi-
tated. Only theinnatebehavior of the teacher is imitated
by the student. Theacquired fitnessandfinal fitnessare
evaluated in the same method that was described in the
case of conventional learning.

As stated above, acquired knowledge does not perco-
late across generations. Each time a new generation is
produced, all lifetime adaptations possessed by the mem-
bers of the previous generation are lost. Newborn agents
inherit only the genome of their parents which does not
encode the acquired network adaptations that took place
during the parent’s lifetime. Successful individuals that
were copied from the previous generation also go through
a new genotype-to-phenotype ontogenetic development
process and thus lose all adaptations acquired during the
previous generation.

To summarize, learning by imitation in a population of
evolving agents (IEE) works as follows:

1. Create the initial population. Assign the network
weights of each individual with randomly selected
values.

2. Repeat:

(a) For each individual in the population:

i. Evaluate the innate fitnessFi.

(b) For each individualS in the population:

i. SetS to be the student.

ii. Select a teacherT from the population ac-
cording to its innate fitnessFi.

iii. Train S with back-propagation algorithm.
Use the output ofT as the desired output
(when computing the output ofT , use the
innate configuration ofT ).

iv. Evaluate the acquired fitnessFa of S.

(c) For each individual in the population:

i. Evaluate the final fitnessFf = Fi+Fa

2 .

(d) Create the next generation by selecting the best
individuals according toFf and allow them to
reproduce as described above.



4 The Tasks

The model described in the previous section was tested on
three different tasks. The first two are standard classifica-
tion benchmark problems. The third is an agent-related
task used in previous studies of the interaction between
learning and evolution.

4.1 The Parity Problem

The agents evolved to solve the five bit parity problem.
A network topology of 5-6-2-1 was used (with an addi-
tional threshold unit in each layer). All 32 possible input
patterns were used for both evaluating the network per-
formance and training.

4.2 The Triangle Classification Problem

A simple two-dimensional geometrical classification
problem was used in this task. The network receives as
input a point from the unit square and should determine
whether it falls within the boundaries of a predefined tri-
angle. A network topology of 2-5-1 was used (with an
additional threshold unit in each layer). The test set and
training set consisted of 100 points randomly selected
from the unit square.

4.3 Foraging

The task in this simulation is similar to the one described
by Nolfi et al. (1994). An agent is placed on a two-
dimensional grid-world (Figure 2). A number of food ob-
jects are randomly distributed in the environment. As its
sensory input the agent receives the angle (relative to its
current orientation) and distance to the nearest food ob-
ject. The agent’s output determines one of four possible
actions: turn 90 degrees left, turn 90 degrees right, move
forward one cell, or do nothing (stay). If the agent en-
counters a food object while navigating the environment,
it consumes the food object. The agent’s fitness is the
number of food objects that were consumed during its
lifetime. Each agent lives for 100 time steps in a 30x30
cells world which initially contains 30 food objects. A
network topology of 2-6-2 was used (with an additional
threshold unit in each layer).

In this task, unlike the previous ones, there is no ex-
plicit oracle we can use to train the agent. Nolfi et al.
(1994) used available data to train the agent on the task of
predicting the next sensory input, which differs, but is in
some sense still “correlated” with that of finding food (the
evolutionary task). In our model, we can still use the same
mechanism of learning by imitation to train the agent on
the original evolutionary task, using the best individuals
in the population as teachers.

There are several strategies we can apply to determine
which sensory input patterns should be used. Randomly
selecting arbitrary input patterns, as we did in previous

Figure 2: The foraging task: The agent (triangle) navi-
gates in a 2D grid-world. Food objects (stars) are ran-
domly distributed in the world. The agent can turn 90
degrees left, turn 90 degrees right, move one cell forward,
or stay. Each time the agent encounters a food object, it
consumes the food object and gains one fitness unit. In-
spired by Nolfi and Floreano (1999)

tasks, is not a suitable strategy here as the real input dis-
tribution that an agent encounters while navigating the en-
vironment may differ considerably from a uniform distri-
bution. However, two behaviorally motivated strategies
may be considered: aquerymodel and anobservational
model. In the query model, the student agent navigates in
the environment and queries the teacher about sensory in-
puts it encounters. In the observational model, the student
observes the teacher agent as the teacher navigates in the
environment and uses the teacher sensory input as train-
ing patterns. Using this model we can further limit the
observed patterns to those which occur during time steps
that precede the event of finding food. This constraint
will allow the student to imitate only useful behavioral
patterns. We will label this strategy asreinforced agent
imitation (RAIL).

5 Results

We first studied IEE in the two classification tasks de-
scribed in Sections 4.1 and 4.2, where conventional su-
pervised learning can still be applied. In these tasks we
were able to compare the effects that both lifetime adap-
tation mechanisms (i.e., learning and imitation) have on
the evolutionary process. The results clearly validate that
the IEE model consistently yields an improved evolution-
ary process. Theinnate fitnessof the best individuals in
populations generated by applying learning by imitation
is significantly higher than that produced by a standard
evolution.

Figure 3 illustrates theinnateperformances of the best
agent as a function of generation, in populations evolved
to solve the triangle classification problem (Section 4.2).



To evaluate the agent’s classification accuracy we use the
Mean-Square Error (MSE) measure to calculate the dis-
tance between the network predicted classification and
the true classification, averaged over all the patterns in
the test set. Fitness is defined as(1−Error). The re-
sults of a simple evolutionary process (dashed line) and
of an evolutionary process that employs conventional su-
pervised learning (dotted line) are compared with those
of an evolutionary process that employs learning by imi-
tation (solid line). Each curve represents the average re-
sult of 4 different simulations with different, randomly as-
signed, initial connection weights. The results presented
in Figure 3 demonstrate how applying either of the learn-
ing paradigms yields better performing agents than those
generated by a simple evolutionary process. In fact, ap-
plying learning by imitation produces practically the same
improvement throughout the process as does conventional
supervised learning.

Figure 3: The triangle classification task: the innate fit-
ness of the best individual in the population as a function
of generation.

When facing the 5-bit parity task, the effect of apply-
ing lifetime adaptation is even more surprising. Figure 4
illustrates theinnateperformances of the best agent as a
function of generation, in populations evolved to solve the
5-bit parity problem. Each curve represents the average
result of 10 different simulations with different, randomly
assigned, initial connection weights. While simulations
applying the IEE model still outperform the simple evo-
lutionary process, using conventional supervised learn-
ing actually results with a significant decrease in perfor-
mances. The problematic nature of this specific task may
account for the these poor results. The parity problem,
although often used as a benchmark, is considered to be
a difficult and untypical classification problem (Fahlman,
1989). Learning algorithms facing this task tend to get
trapped in local minima. However, learning from an im-
perfect teacher, as is the case in learning by imitation, in-
duces a certain level of noise into the learning process and
may thus help to prevent the process from getting stuck.

Figure 4: The 5-bit parity task: the innate fitness of the
best individual in the population as a function of genera-
tion.

Evidently, learning by imitation is sufficient (if not su-
perior) to enhance the evolutionary process in the same
manner that was previously shown for conventional su-
pervised learning. The knowledge possessed by the best
members of the population can be used as an alternative
training data for other members, even in the early stages
of the evolutionary process. We then turned to use IEE
to enhance evolution where explicit training data is not
available. This is the case in the foraging task described
in Section 4.3.

Figure 5: The foraging task: the averageinnate fitness
of the population as a function of generation. The results
of a simple evolutionary process are compared with those
of simulations that employed lifetime imitation with two
distinct adaptation forces.

Figure 5 illustrates the results of the simulations in
which the agents faced the foraging task. The average
innate fitnessof the population in a simple evolutionary
process is compared with the averageinnate fitnessof
populations that applied learning by imitation. The agents



in this simulation employed theRAIL strategy of imita-
tion. Fitness is measured as the number of food objects
an agent consumes during its lifetime. Each curve repre-
sents the average result of 10 different simulations with
different, randomly assigned, initial connection weights.
As can be seen in Figure 5, autonomous agents produced
by our model demonstrate better performances than those
generated by the simple evolutionary process; that is, their
innatecapacity to find food in the environment is superior.

We also examined the effect of employing different
adaptation forces. In our experiments, the adaptation
force is implemented simply as the number of learning
iterations we apply in each lifetime adaptation phase.
The results illustrated in Figure 5 also demonstrate that
a higher adaptation force (i.e., a higher number of itera-
tions in each imitation phase) further improves the perfor-
mance of the resulting agents. This effect coincides with
an analogous effect reported by Best (1999) where higher
transmission force resulted with faster convergence of the
evolutionary process.

To further explore the effects of lifetime imitation on
evolution, we examined the improvement in fitness dur-
ing lifetime as a function of generation. The improvement
can be evaluated by calculating the difference between the
acquired fitnessand theinnate fitness(i.e.,Fa−Fi) in ev-
ery generation. The results illustrated in Figure 6 clearly
demonstrate that in very early stages of the evolutionary
process, the best agents in the population already possess
enough knowledge to improve the fitness of agents that
imitate them. In fact, the contribution of imitative learn-
ing decreases as the evolutionary process proceeds, prob-
ably due to population convergence to high performance
solutions.

Figure 6: The foraging task: the improvement of the pop-
ulation average fitness gained by lifetime imitation as a
function of generation.

An additional observation on the interaction between
lifetime adaptation and evolution can be obtained from
examining the diversity of the population throughout the
evolutionary process. Figure 7 illustrates the average

genome variance (which can serve as a measure of the
population’s diversity) as a function of generation. Dur-
ing the first few generations, we note a rapid decrease of
the population initial diversity due to the selection pres-
sure of the evolutionary process. However, throughout
most of the following generations, the diversity found in
populations subject to lifetime adaptation by imitation is
higher than the diversity of populations undergoing a sim-
ple evolutionary process. Allowing members of the popu-
lation to improve their fitness through lifetime adaptation
before natural selection takes place facilitates the survival
of suboptimal individuals and helps to maintain a diver-
sified population. This feature can partly account for the
benefit gained by applying lifetime adaptation to agents
evolution.

Figure 7: The foraging task: the average genome variance
as a function of generation with and without imitation.
Populations that employ lifetime adaptation, maintain a
higher diversity throughout the evolutionary process.

6 Discussion

This paper demonstrates how learning by imitation can
be applied to an evolutionary process of a population of
agents, utilizing the knowledge possessed by members of
the population. Our IEE model proves to be a powerful
tool that can successfully enhance evolutionary computa-
tion simulations in agents.

In our model, the agents’ ability and incentive to im-
itate is assumed to be instinctive. Quoting Billard and
Dautenhahn (1999), “our experiments address learning by
imitation instead of learning to imitate”. The imitation
paradigm presented in this paper additionally assumes
that the agents can estimate the fitness of their peers (i.e.,
more successful agents are larger and look healthier, etc.).
More specifically, the RAIL strategy, where agents im-
itate only successful behavior, assumes that agents can



detect significant changes in the fitness of their peers dur-
ing their lifetime or identify specific activities that may
contribute to their fitness. The model presented in Sec-
tion 3 can provide a framework to explore ways in which
these assumptions can be relaxed. Coding the imitative
behavior patterns themselves into the genome might re-
sult in the spontaneous emergence of imitative behavior
in a population of agents. Behavior patterns that can be
coded may include attributes such as the imitation model
selection scheme, imitation strategy, imitation period, etc.
Our model can also be extended to study the incentive that
should be provided to an agent to make it assume the role
of a teacher. Teaching, or even allowing someone else
to imitate one’s actions is, by definition, an altruistic be-
havior, and might have various costs associated with it.
We wish to explore the conditions which may lead to the
emergence of active teaching even in the presence of a fit-
ness penalty for such a behavior. Such favorable teaching
conditions may arise when the fitness associated with var-
ious actions is correlated with the spread of these actions
in the population (see also Boyd and Richerson, 1985, for
a discussion of frequency-dependent bias). A good ex-
ample of this case can be found in the emergence of nor-
mative behaviors (Axelrod, 1986; Flentge et al., 2001).
Since the IEE model presented here entails the most sim-
ple form of cultural transmission and does not require any
complex mechanisms of cultural evolutionit can serve
as a solid testbed for future studies of the emergence,
evolution and prevalence of imitation.

7 Summary

Our study focuses on the effects of imitation on the evo-
lution of agents in the absence of cultural evolution. We
show that introducing the adaptive mechanism of lifetime
learning by imitation can significantly enhance the evolu-
tionary processes, resulting in better performing agents.
This paradigm is particulary useful in evolutionary simu-
lations of autonomous agents, when conventional super-
vised learning is not possible. Our model can serve as a
theoretical and experimental framework to further explore
central issues concerning the interaction between imita-
tion, learning and evolution.
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