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Abstract

Genes that underlie human disease are important subjects of systems biology research. In the present study, we demonstrate

that Mendelian and complex disease genes have distinct and consistent protein–protein interaction (PPI) properties. We show

that five different network properties can be reduced to two independent metrics when applied to the human PPI network.

These two metrics largely coincide with the degree (number of connections) and the clustering coefficient (the number of

connections among the neighbors of a particular protein). We demonstrate that disease genes have simultaneously unusually
high degree and unusually low clustering coefficient. Such genes can be described as brokers in that they connect many

proteins that would not be connected otherwise. We show that these results are robust to the effect of gene age and

inspection bias variation. Notably, genes identified in genome-wide association study (GWAS) have network patterns that are

almost indistinguishable from the network patterns of nondisease genes and significantly different from the network

patterns of complex disease genes identified through non-GWAS means. This suggests either that GWAS focused on

a distinct set of diseases associated with an unusual set of genes or that mapping of GWAS-identified single nucleotide

polymorphisms onto the causally affected neighboring genes is error prone.
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Introduction

Protein interaction data are commonly drawn as networks

with nodes representing proteins and edges representing

the detected protein interactions. Individual proteins (or no-

des) can then be characterized with a variety of topological

measures, such as degree, betweenness centrality, and clus-

tering coefficient. These measures turn out to relate to func-

tional properties of genes such as, for example, the closer

the two proteins are located to each other in protein–
protein networks the more similar they are in functional

annotations (Sharan et al. 2007). Network properties also

appear to be somewhat predictive of protein function with,

for instance, highly connected and globally centered genes

in protein networks tending to be physiologically more

‘‘important’’ and less dispensable (Jeong et al. 2001; Hahn

and Kern 2005; Wuchty and Almaas 2005).

Network properties of genes underlying human inherited
diseases have been investigated (Goh et al. 2007; Feldman

et al. 2008; Jiang et al. 2008). Although different studies

focused on substantially different disease gene sets, they

reached some similar conclusions. Specifically, they found

that disease genes encode non-hub proteins and tend to

have an intermediate levels of degree in the protein–protein

interaction (PPI) networks (Goh et al. 2007; Feldman et al.

2008). This allowed network properties of disease genes to

be used for the purpose of disease gene prioritization (e.g.,

Kohler et al. 2008; Wu et al. 2008).

The current understanding of network properties of dis-

ease genes is limited for a number of reasons. The first prob-

lem is that the widely used network property measures are

strongly correlated with each other, which makes it difficult

to relate different studies using different measures to each

other. The second problem is that many studies pooled Men-

delian and complex disease genes, as well as complex dis-
ease genes detected in pedigree- or candidate gene–based

studies with those detected in genome-wide association

studies (GWASs). Third, previous studies have not taken into

account the fact that Mendelian disease genes tend to be
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evolutionarily old and complex disease genes tend to be of
an intermediate age (Domazet-Loso and Tautz 2008; Cai

et al. 2009). Given that several network properties are cor-

related with gene age, such as, for example, older genes

tending to have more protein–protein connections, we think

this feature of disease genes must be considered. Finally, it is

possible that disease genes have been better studied than

other genes and thus might have artifactually high numbers

of discovered PPIs.
In the present study, we use high-quality data sets of

human disease genes in conjunction with a comprehensive

human PPI network and a validated measure of evolutionary

age to investigate the relationships among five network to-

pology metrics. We define two principal components (PCs)

that capture most of the network properties and address

several key questions concerning disease genes, including:

1) Are disease genes exceptionally well connected and glob-
ally centered in the protein network? 2) Can we identify char-

acteristic network properties that distinguish disease from

nondisease genes? 3) Are properties of disease genes more

homogeneous than those of randomly sampled genes? and

4) To what extent do genes identified in GWAS exhibit

network properties similar to those of other disease genes?

Materials and Methods

Integrated PPI Network

We obtained the integrated human PPI network (between

10,299 human proteins) from Bossi and Lehner (2009). The

network contains 80,922 interactions compiled from a total

of 21 different human PPI databases (see table 1 of Bossi and
Lehner 2009 for details). All interactions included are sup-

ported by at least one piece of direct experimental evidence

demonstrating physical interaction between two human

proteins (Bossi and Lehner 2009). Several network metrics

we computed (see below) require a connected graph; there-

fore, we extracted the largest connected component (in-

cluding 10,042 genes and 80,543 connections), and all

data analyses were conducted with this connected compo-
nent (supplementary fig. S1, Supplementary Material

online).

Network Centrality and Topological Measures

The interaction network was represented as an undirected

graph with proteins as nodes and interactions as undi-

rected edges. We considered five measures to capture

the distinct features of network centrality and topology

of each node:

1. Degree centrality (k) of a given node is simply the
number of links that a node has with other nodes in
the network (Nieminen 1974; Dorogovtsev and
Mendes 2003).

2. Betweenness centrality (CBtw) is the fraction of
shortest paths passing through node i:

CBtw
i 5

XN

j5 1

Xj� 1

k5 1

gjkðiÞ
gjk

;

where gjk(i) is the number of shortest paths from j to k
through i and gjk is the total number of shortest paths

between j and k. CBtw measures the global importance

of a protein in communicating between pairs of proteins

from the viewpoint of shortest paths (Freeman 1977).
3. Current information flow (CCif) is computed using

a method modeling a PPI network as an electrical
circuit, where interactions are modeled as resistors
and proteins as interconnecting junctions (Missiuro
et al. 2009). Computation of CCif takes into account
the relative contribution of all possible paths. Proteins
central to the transmission of biological information
throughout the network have higher CCif. It has been
shown that CCif provides more consistent results than
CBtw when noisy data is added to a PPI network
(Missiuro et al. 2009).

4. Bridging centrality (CBdg) measures the extent to
which a node or an edge is located between
well-connected regions (Hwang et al. 2006). It is
defined as

CBdg
i 5CBtw

i � BCi ;

where CBtw
i is the betweenness centrality of node i, and

BCi is the bridging coefficient that assesses the local

bridging characteristics in the neighborhood of node i,
which is defined as

Table 1

Mean and Variance of Network Measures of Genes

k Btw Cif Bdg Clu

Nondisease 0.743 (0.363) 3.66 (1.100) 4.33 (0.243) �5.02 (0.369) 0.34 (0.099)

Mendelian 0.772ns (0.272#) 3.91** (0.924ns) 4.45** (0.214ns) �4.94ns (0.240##) 0.23*** (0.068#)

Complex 0.828* (0.273#) 3.94*** (0.984ns) 4.49*** (0.234ns) �4.93* (0.230###) 0.19*** (0.049##)

GWAS 0.669ns (0.328ns) 3.66ns (1.140ns) 4.37ns (0.229ns) �5.04ns (0.291ns) 0.27ns (0.084ns)

The network measures include degree centrality (k), betweenness centrality (Btw), current information flow (Cif), bridging centrality (Bdg), and clustering coefficient

(Clu). All measures, except of Clu, were log10-transformed before computation of mean and variance (inside parentheses). Student’s t-tests were conducted to compare the

mean between disease and nondisease genes (significance levels: nsnot significant; *P , 1 � 10�3; **P , 1 � 10�5; ***P , 1 � 10�10). F-tests were conducted to compare the

variance between disease and nondisease genes (significance levels: nsnot significant; #P , 1 � 10�5; ##P , 1 � 10�10). Note that Mann–Whitney U test and Levene’s test, which

are less sensitive to nonnormal distributions, were also used to test equality of means and variances, respectively; similar results were produced (data not shown).
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BCi 5
dðiÞ� 1

P
v2NðiÞ

1
dðvÞ

;

where d(i) is the degree of node i and N(i) is the set of

neighbors of node i. CBdg can help to identify bridging
nodes, that is, nodes with high information flow that are

located between highly connected modules.
5. Clustering coefficient (CClu) is defined as

CClu
i 5

2n

kiðki � 1Þ ;

where n denotes the number of direct links connecting

the Ki nearest neighbors of node i. CClu ranges from zero

(for a node that is part of a loosely connected group) to

one (for a node at the center of a fully connected cluster).

CClu measures the degree of interconnectivity in the
neighborhood of a node (Watts and Strogatz 1998).

A Matlab toolbox called SBEToolbox (Systems Biology

and Evolution Toolbox, http://www.bioinformatics.org/

sbetoolbox/) was developed to calculate all these

network metrics.

Human Disease Genes

First, we obtained 952 Mendelian disease genes from the

nonredundant version of the Mendelian Inheritance in

Man (OMIM) called hOMIM (Blekhman et al. 2008), which
is hand-curated and free of complex phenotypic entries.

We mapped about 68% (647) of them onto the network.

Second, we retrieved 1,656 complex disease genes from

genetic association database (GAD) (Becker et al. 2004).

We excluded genes that are also Mendelian disease genes

from the GAD gene set. We mapped 67% (1,110) of them

onto the network. Third, we obtained GWAS genes (i.e.,

genes reported in GWA studies) from the online catalog of
published genome-wide association studies (http://www.

genome.gov/gwastudies; Hindorff et al. 2009). As of date

of access (18 October 2009), the catalog contained 1,293

GWAS genes associated with 269 distinct traits reported in

419 publications. We removed 592 GWAS genes associated

with nondisease traits (such as, height, weight, skin pigmen-

tation, and ‘‘select biomarker’’). We mapped 59% (412) of

the remaining 701 genes onto the network. Finally, we used
the comprehensive collection of 21,528 human protein-

coding genes from the Ensembl build 50 (Flicek et al.

2008) as a representative set of all well-characterized human

genes. Genes that do not appear in any of the three disease

gene sets are regarded as nondisease genes.

Evolutionary Age of Genes

Domazet-Loso and Tautz (2008) studied the evolutionary or-

igin of human protein-coding genes using a well-supported

phylogeny of 19 species that were carefully chosen based on
the availability of complete annotated genomes, the reliabil-

ity of phylogenetic relationships, and the importance of evo-

lutionary transitions (supplementary fig. S2, Supplementary

Material online). The internodes at different phylogenetic

levels form a phylostratigraphic scheme of metazoan evolu-

tion (Domazet-Loso et al. 2007). To place all human genes

into these phylostrata, they used Blast analysis with an E
value cutoff of 0.001 to compare human proteins against
the National Center for Biotechnology Information nonre-

dundant database. They then mapped human genes ac-

cording to the evolutionary origin of their founder genes

on the phylogeny.

Adopting the Dollo parsimony principle (i.e., assuming

that genes can be lost but cannot reevolve independently

in different lineages [Le Quesne 1974; Farris 1977] or be hor-

izontally transferred), we used the phylostratum of each
gene to approximate its evolutionary age (reversing the or-

der of the various phylostrata to obtain an estimate of the

gene age). Genes at the highest phylostratum (19) were as-

signed into the youngest age group 1, the lowest phylostra-

tum 1 were assigned into the oldest age group 19, and so on

and so forth. To increase statistical power, we further pooled

the genes in the 19 age groups into six combined age clas-

ses: Mammalia/Primates, Chordata/Vertebrate, Eumetazoa/
Deuterostomia, Metazoan, Eukaryota, and cellular organ-

isms (see supplementary fig. S2, Supplementary Material

online for the pooling schema and the numbers of genes

in six age groups after combination). The nonsynonymous

substitution rate (dN) and synonymous substitution rate

(dS) for human–Macaque orthologs were downloaded from

BioMart (http://www.biomart.org).

Results

We used an integrated network data set that contains nearly

half of all human proteins (Bossi and Lehner 2009). The

Mendelian and complex disease genes were retrieved from
hOMIM (Blekhman et al. 2008) and GAD (Becker et al.

2004), respectively. These two types of disease genes were

investigated separately because they show distinct proper-

ties in many respects (Blekhman et al. 2008; Cai et al. 2009).

In addition, we obtained genes identified in GWAS of hu-

man disease (Hindorff et al. 2009). In total, 647 hOMIM,

1,110 GAD, and 412 GWAS genes can be mapped on

the PPI network (Materials and Methods). However, the
three sets are not mutually exclusive. For instance, 331

genes are shared between hOMIM and GAD, whereas

109 genes are shared between GAD and GWAS (supple-

mentary fig. S3, Supplementary Material online). In order

to study each type of disease genes independently, we re-

moved hOMIM genes from GAD gene set and removed both

hOMIM and GAD genes from GWAS gene set. No genes

were removed from hOMIM as all of them were manually

Network Properties of Human Disease Genes GBE
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curated and are free of associations with complex pheno-

types (Blekhman et al. 2008). The results reported in this pa-

per were based on data analysis with three nonoverlapping
sets of 647 Mendelian disease genes, 779 complex disease

genes, and 287 GWAS genes.

Characteristic Network Properties of Mendelian
and Complex Disease Genes

We calculated degree (k), betweenness centrality (CBtw), cur-

rent information flow (CCif), bridging centrality (CBdg), and

clustering coefficient (CClu) for each applicable protein in

the complete interaction network (Materials and Methods).

Table 1 provides the results of comparisons of the mean and

variance of these metrics between disease genes and non-

disease genes. Average degree (k) of Mendelian disease

genes is not different from that of nondisease genes, and
�k of complex disease genes is only marginally significantly

higher than that of nondisease genes. This result suggests

that Mendelian and complex disease genes are not hub

genes, which is consistent with results of previous studies

(Goh et al. 2007; Feldman et al. 2008). Mendelian and com-

plex disease genes have significantly higher CBtw and CCif,

suggesting that these disease genes tend to occupy network

positions that are of global importance in communications
between protein pairs. At the same time, they have signif-

icantly lower CClu suggesting that the number of connec-

tions among the neighboring proteins of disease genes is

unusually low. Interestingly, the variance of k, CBdg, and CClu

of Mendelian and complex disease genes is also unusually

small, suggesting consistency in network properties of dis-

ease genes. Finally, GWAS genes do not show any statisti-

cally significant differences from nondisease genes. Note
that this might be partially due to the small sample size

of GWAS genes. We will return to this question later in

the paper.

It seems that Mendelian and complex disease genes (but
not GWAS genes) have distinct and consistent network

properties; however, this is difficult to interpret for three rea-

sons. First, the network metrics are strongly correlated with

each other (table 2) and thus it is not entirely clear which

network properties tend to be truly distinct for disease

genes. Second, evolutionary ages of Mendelian and com-

plex disease genes differ from those of nondisease genes

(Domazet-Loso and Tautz 2008; Cai et al. 2009) and genes
of different ages tend to have different network properties

(see below). Thus, disease genes might have distinct net-

work properties simply due to their different age. Finally,

it is possible that disease genes have been studied more

thoroughly compared with other genes and thus might have

a disproportionately high number of detected PPIs. Below

we 1) reduce the dimensionality of the network metrics us-

ing principal component analysis (PCA), 2) show that the
network properties of disease genes are distinct over and

above what is expected of genes of their age, and 3) provide

evidence that the inspection bias cannot account for the ob-

served results.

Defining Two Key PCs for Network Properties of
Disease Genes

To understand the relationships among the five network

measures, we conducted PCA. All variables that show de-

viation from normality (i.e., all except CClu) were log trans-

formed and then scaled to zero mean and unit variance. The

result of PCA shows that the first two PCs explain 73.4% of
the total variation (40.7% and 32.7% for the first and sec-

ond PC, respectively).

The magnitude and sign of each variable’s contribution to

the first two PCs are shown in a PC biplot (fig. 1A). Each

variable is represented by a line from the origin to a point

with coordinates (c1, c2). The coordinates c1 and c2 are

the correlations between the variable and the first and sec-

ond axis, respectively. Longer lines indicate stronger corre-
lations between a PC (biplot axis and everything related to

that) and the corresponding variable. The first PC (PC 1) cor-

relates most strongly with three variables, k, CBtw, and CCif;

the second PC (PC 2) correlates strongly with the other two

variables, CBdg and CClu.

PCA was conducted with all (disease and nondisease)

genes. Nondisease and disease genes were highlighted sep-

arately in heat maps to show their density and distribution in
the PC 1–2 space (fig. 1B,C,D,E). Compared with nondi-

sease genes, Mendelian, and complex disease genes occupy

a much narrower region. Distributions of Mendelian and

complex disease genes are more biased (41%, 27%,

20%, and 12% in I–IV quadrants for Mendelian disease

genes, fig. 1C; 49%, 26%, 18%, and 7% for complex dis-

ease genes, fig. 1D) than nondisease genes, which are more

evenly distributed in the four quadrants (29%, 23%, 29%,

Table 2

Correlation Coefficients between Variables: Degree (k), Between-

ness Centrality (Btw), Current Information flow (Cif), Bridging

Centrality (Bdg), Clustering Coefficient (Clu), Nonsynonymous

Substitution Rate (dN), Synonymous Substitution Rate (dS), the

Nonsynonymous-to-Synonymous Substitution Ratio (dN/dS), and

Evolutionary age (age)

k Btw Cif Bdg Clu dN dS

Btw 0.846

Cif 0.947 0.945

Bdg 0.383 0.660 0.507

Clu 0.625 0.334 0.480 0.043

dN 20.144 20.122 20.133 20.033 20.082

dS 20.060 �0.031 20.039 0.008 20.054 0.505

dN/dS 20.140 20.128 20.137 20.043 20.065 0.890 0.124

Significant coefficients (P , 0.001, Spearman correlation test) are indicated in

bold.
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and 19%, fig. 1B). The centers of distributions are shifted
toward the first quadrant with proportionally more Mende-

lian and complex disease genes having positive PC 1 and PC

2 (G-test, P , 0.001 for the comparison of Mendelian and

complex disease genes with nondisease genes). Note that

complex disease genes have a more biased distribution to-

ward the first quadrant than the Mendelian genes (G-test, P
, 0.001). Because PC 1 correlates strongly and positively

with degree (k) and PC 2 correlates strongly and negatively
with clustering (CClu), the above results can be stated differ-

ently: Mendelian or complex disease genes tend to be highly

connected (high k) to genes that are themselves are not very

well connected (low clustering CClu). This property can be

thought of as ‘‘brokering’’ value of a protein such that a pro-

tein with a high brokering value connects many other pro-

teins that would not be connected otherwise. For an

example of the connection patterns for two broker genes
(SUMO4 and PRKCZ) and two examples of nonbroker genes

with similar values of k (PCBP1 and BMS1), see supplemen-

tary fig. S4 (Supplementary Material online).

Distribution of GWAS genes in the four quadrants is less

biased (37%, 24%, 27%, and 12%, fig. 1E) than that of

other disease genes and is only marginally enriched in the

direction of the first quadrant (P 5 0.016) compared with

nondisease genes. Their distribution is also not different
from that of Mendelian genes (P 5 0.32), however, it is sig-

nificantly different from that of complex disease genes (P,
0.01). This indicates that the different network propertied of

GWAS genes compared with complex disease genes is not

merely a result of the small number of GWAS genes and lack

of power.

We further placed disease and nondisease genes on the

scatter plot of k and CClu (fig. 2). It is clear that most of the
highly connected Mendelian (fig. 2A) and complex (fig. 2B)

disease genes (with log10(k) � 1.5) have a low CClu (�0.2),

which is not the case for the nondisease genes with similar

values of k. GWAS genes do not show this distinct feature

(fig. 2C). We split the scatter plot area ad hoc (based on vi-

sual inspection) into three regions defined by log10(k) 5 1.5

(or k 5 31) and CClu 5 0.2 (fig. 2). Region I contains genes

with relatively low k, whereas regions II and III contain genes
with high k. The difference between regions II and III is that

region III contains genes with lower CClu. Region III repre-

sents a characteristic ‘‘high brokering value’’ zone, in which

FIG. 1.—PCA of network properties of human genes. (A) Biplot

showing five variables (represented by arrows): degree (k), betweenness

centrality (Btw), current information flow (Cif), bridging centrality (Bdg),

and clustering coefficient (Clu). (B,C,D,E) Heat maps show density and

distribution of nondisease, Mendelian, complex, and GWAS genes, on

the PC space. Numbers at the four corners of each heat map is the

percentages of genes located inside the corresponding quadrants.

The dished line indicates 90% confidence ellipse for the probability that

the corresponding genes will fall within the area.
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both Mendelian and complex disease genes are present
much more often. For instance, only 2.4% and 1.3% of

all genes in region II are Mendelian and complex genes,

while this number goes up to 10.4% and 16.6% in region

III, respectively (P, 0.001 for all comparisons,G-test). Again

the pattern is much less pronounced albeit marginally sig-

nificant for GWAS genes (III [3.7%] vs. II [1.3%],

P 5 0.008, G-test).

Network Properties as a Function of Gene Age

To investigate whether genes of different ages tend to have

different network properties and whether this can explain

differences in network properties of disease genes, we
grouped all genes into different age groups. Gene age

was estimated based on the concept of phylostrata

(Domazet-Loso and Tautz 2008), assuming Dollo parsimony

(Le Quesne 1974; Farris 1977). Six age groups were defined

(labeled 1–6, where group 1 includes the youngest genes

and group 6 the oldest genes) and each protein was as-

signed to one of these age groups (Materials and Methods).

Disease and nondisease genes are not distributed equally in
different age groups. Mendelian disease genes are overrep-

resented in the old group, whereas complex disease genes

are overrepresented in the middle age groups (Domazet-

Loso and Tautz 2008; Cai et al. 2009).

Figure 3 illustrates the changes of PCs as a function of the

evolutionary age of the gene. For nondisease genes, aver-

age PC 1 increases monotonically with gene age (Spear-

man’s q 5 0.104, P 5 4.44 � 10�16), indicating that
older nondisease genes have higher levels of k, CBtw, and

CCif. This is not unexpected because proteins of older genes

had more time to acquire interactions with other proteins. In

contrast, Mendelian and GWAS genes show no correlation

between PC 1 and evolutionary age (both P . 0.001). For

complex disease genes, the correlation is positive and mar-

ginally significant (Spearman’s q5 0.113, P5 5.61 � 10�4,

table 3; fig. 3A). All disease genes have relatively high level
of PC 1 compared with nondisease genes of the same age

(fig. 3A). PC 2 shows no correlation with gene age for all the

genes (table 3, fig. 3B). We also show the changes of indi-

vidual network metrics as a function of gene age in the sup-

plementary Information (supplementary fig. S5–S7,

Supplementary Material online).

FIG. 2.—Characteristic changes of clustering coefficient (Clu) as

a function of degree (k) for disease genes. Red crosses are data points of

disease genes, (A) Mendelian, (B) complex, and (C) GWAS. Red circles

are means of Clu for data points in the bins with unequal widths (so that

each bin contains same number of disease genes). Blue crosses and blue

squares are for nondisease genes for comparison. The solid line shows

the quadratic fit of a linear model with first-order and second-order

predictors of log10(k). The red and blue lines are for disease and

nondisease genes, respectively. Rectangles represent three empirically

defined regions (I, II, and III). Percentages of genes that are disease

genes in each region are given in parentheses. The results of v2 tests for

the percentage of region III against those of regions I and II are III versus

II, P5 7.4 � 10�9 and III versus I, P 5 0.02 for Mendelian disease genes;

III versus II, P 5 0 and III versus I, P 5 8.9 � 10�9 for complex disease

genes; III versus II, P 5 0.008 and III versus I, P 5 0.8 for GWAS genes.
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The lack of correlation between PC 1 and gene age is one

of the characteristic patterns for all three types of disease

genes. Given that the numbers of disease genes (especially

those in the young age groups) are small, it is possible that

the lack of correlation between PC 1 and gene age in disease

genes is a product of the small sample size. To rule out this
possibility, we randomly sampled nondisease genes in each

age bin such that the number of genes in the sampled sub-

set was equal to the number of Mendelian, complex, or

GWAS genes in the corresponding age bin, respectively.

We repeated this subsampling process to create 10,000 rep-

licates of nondisease gene sets and computed the Spear-

man’s correlation coefficients between PC 1 and the age

of the gene for these subsets. The observed correlation co-

efficients obtained for disease genes falls at the very end of

the lower tail of the resampled q distribution (empirical P ,

0.0001, 6.67 � 10�4, and 3.33 � 10�4 for Mendelian, com-

plex, and GWAS genes, respectively). Thus, the lack of cor-

relation between PC 1 and gene age cannot be attributed to

the small sample size of disease gene sets.

FIG. 3.—PCs as a function of gene age. (A) PC 1, nondisease versus disease genes; (B) PC 2, nondisease versus disease genes. Types of disease

genes include Mendelian, complex, and GWAS genes, at left, middle, and right panels, respectively. Box plots of PCs for nondisease genes (shaded blue)

and disease genes (shaded red) are superimposed by average PCs for nondisease genes (blue circles) and disease genes (red squares). Regression lines

are depicted for nondisease genes (blue) and disease genes (red).

Table 3

Correlations between Evolutionary Age of Genes (age) and Variable x: the First PC (PC 1), Degree (k), Betweenness Centrality (Btw), Current

Information Flow (Cif), the Second PC (PC 2), Bridging Centrality (Bdg), and Clustering Coefficient (Clu)

corr (age, x) All Nondisease Mendelian Complex GWAS

PC 1 0.093 (5.55 3 10216) 0.104 (4.44 3 10216) 0.038 (0.380) 0.129 (8.64 3 1024) �0.014 (0.774)

k 0.090 (0) 0.105 (0) �0.015 (0.706) 0.117 (0.001) �0.007 (0.870)

Btw 0.083 (1.11 3 10216) 0.104 (0) �0.021 (0.601) 0.052 (0.150) 0.012 (0.775)

Cif 0.079 (2.33 3 10215) 0.099 (0) �0.016 (0.692) 0.065 (0.070) 0.003 (0.951)

PC 2 �0.022 (0.057) �0.025 (0.051) 0.059 (0.176) �0.046 (0.238) �0.006 (0.898)

Bdg 0.016 (0.109) 0.033 (0.003) �0.027 (0.499) �0.094 (0.009) �0.004 (0.929)

Clu 0.015 (0.132) 0.030 (0.007) �0.057 (0.144) �0.045 (0.208) �0.045 (0.273)

Significant coefficients (P , 0.001, Spearman correlation test) are indicated in bold.
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Because Mendelian and complex disease genes have dis-

tinct age distributions (Domazet-Loso and Tautz 2008; Cai

et al. 2009, supplementary fig. S8, Supplementary Material

online), it is possible that their distinct network properties

are simply a function of their age. To rule out this possibility,

we randomly sampled a subset of nondisease genes to the

same size and age distribution of corresponding diseases

genes (fig. 4). The procedure allowed us to control for dif-
ferent size and age distribution of gene groups. Figure 4A,B
shows the results derived from using Mendelian and com-

plex disease genes as subsampling targets, respectively.

Means and variances of PC 1 and PC 2 for subsampled gene

subsets are shown as scatter crosses. The subsampling pro-

cedure was repeated 10,000 times to get the 99.9% con-

fidence ellipses. Observed data points for nondisease genes

are within the confidence ellipses. The variance of PC 1 for
Mendelian disease genes is lower, and the mean of PC 1 for

complex disease genes is higher than expected by chance.

Mendelian and complex disease genes have significantly

higher mean and lower variance of PC 2. As expected based

on the above results, the GWAS genes do not deviate

significantly from the subsampled nondisease genes

(fig. 4). Note that the GWAS genes have the same age

distribution as the nondisease genes (supplementary fig. S4,

Supplementary Material online) and thus figure 4 shows

comparison of the GWAS genes with nondisease genes

without any subsampling.

Impact of the Inspection Bias

Last, we address the problem of inspection bias—the impact

of more intense investigation of known, especially disease

genes on the number of detected PPIs. The inspection bias

alone should not dramatically affect the signals we have de-

tected because Mendelian and complex disease genes do

not have a higher average degree than nondisease genes

(table 1), which is opposite to the expectation of inspection
bias. Nevertheless, we conducted additional tests to control

for other less obvious potential effects of this bias.

First, we applied a simple assay to show that disease

genes have indeed been studied more intensively than

other genes. We separated human genes into named

and unnamed genes according to whether they have

HGNC-(HUGO Gene Nomenclature Committee)-approved

names. Genes under intensive experimental studies tend

FIG. 4.—Variance and mean of PCs of disease genes. The open circle and square indicate observed data points of variance against mean of the

two PCs for Mendelian and complex disease genes, respectively. The crosses are data points of mean and variance for 10,000 randomly sampled subsets

of nondisease genes, with the same size and age distribution as (A) Mendelian and (B) complex disease genes. The contour denotes the 99.9%

confidence ellipse.
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to have unique and meaningful names; genes that have

undergone fewer studies may not have such names. In

our gene set, there are 447 unnamed genes, including

419 nondisease genes, 6 Mendelian disease genes, 19

complex disease genes, and 3 GWAS genes (supplemen-

tary table S1, Supplementary Material online). Proportion-
ally disease genes are more likely to be named than

nondisease genes (P, 0.0003 for all three types of disease

genes, G-test).

We then filtered out all unnamed genes and repeated

data analysis with only named genes. In this way, we de-

creased the impact of inspection bias due to nondisease

genes being disproportionately poorly studied. We found

that all results in above sections hold without any qualitative
changes (data not shown). Second, we randomly sampled

nondisease genes to generate multiple gene sets with the

same number of genes and the same distribution of k as that
in the corresponding disease gene set. For each type of dis-

ease genes, we constructed 10,000 such replicates and ob-

tained the distribution of CBtw, CCif, CBdg, and CClu. We

found that, except for CBdg, the three other network meas-

ures for Mendelian and complex disease genes fall far away

from the center of distribution of the measures, with signif-

icantly higher CBtw and CCif and significantly lower CClu

(fig. 5). Thus controlling for k does not affect the detection
of characteristic network properties of disease genes. This

confirms that genes with the same level of k still differ in

other aspects depending on whether they are disease genes

or not.

Discussion

Given the functional importance of PPI networks, network
properties of genes underlying human diseases might reveal

important clues about the origin and etiology of disease. It is

not surprising that these properties have been a subject of

many studies (Goh et al. 2007; Feldman et al. 2008; Jiang

et al. 2008). Here, we have tried to improve upon these

studies in a number of ways. First, we used well-curated

nonredundant disease gene sets separated into three cate-

gories: Mendelian disease genes, complex disease genes dis-
covered in pedigree studies, and genes discovered through

GWAS. Second, we considered correlations among various

network metrics and reduced them to two independent PCs

using PCA. Third, we incorporated into our analysis the evo-

lutionary age of genes, which has not been controlled for by

the studies of network properties of disease genes and rarely

in the studies of protein–protein networks in general (with

some notable exceptions, e.g., Kunin et al. 2004; Wuchty
and Almaas 2005; Kim et al. 2007). PPI networks are not

static in evolution. Rather they change constantly through

the rewiring of interactions as well as through the gain

and loss of genes. Older genes are likely to differ in the num-

ber and type of PPIs and we know that disease genes do

have biased age distributions (Domazet-Loso and Tautz

2008; Cai et al. 2009). We therefore believe that incorpo-

rating information about the evolutionary age of each
gene into the network analysis is essential for revealing

characteristic network properties of genes. Finally, we

tested whether our results could be explained by the arti-

fact of the inspection bias: the increase in the number of

PPIs produced through more careful studies of well-known

genes.

We demonstrated that five network metrics (degree, be-

tweenness centrality, information flow, bridging centrality,
and clustering coefficient) can be mapped onto two PCs

without losing much ability to explain the overall variation

in the data. The first PC correlates strongly with degree, be-

tweenness centrality, and current information flow, whereas

the second PC correlates strongly and positively with

FIG. 5.—Distributions of network metrics for subsampled non-

disease genes. Network metrics include betweenness centrality (Btw),

current information flow (Cif), bridging centrality (Bdg), and clustering

coefficient (Clu). Values of network metrics for (A) Mendelian and (B)

complex disease genes are shown as vertical red bars. For each

distribution, 10,000 replicates of nondisease genes with same number

and degree of genes as disease genes were constructed.
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bridging centrality and strongly and negatively with the clus-
tering coefficient. We discovered that Mendelian and com-

plex disease genes have unusually high values of both PC 1

and PC 2. In other words, disease genes tend to be highly

connected (large values of PC 1 and thus degree) but often

they are connected to genes that are not connected well

among themselves (high values of PC 2 and thus low values

of clustering). In this way, disease genes appear to serve as

‘‘brokers.’’ Just as human brokers connect strangers who
otherwise would not know each other, broker proteins con-

nect ‘‘stranger’’ proteins that do not interact with each

other. It is possible that in this way, disease genes find them-

selves in particularly fragile positions in PPI networks and this

is why their disruption leads to identifiable disease pheno-

types.

The network properties of Mendelian and complex dis-

ease genes appear both distinct and remarkably consistent.
Indeed, the value of degree for disease genes does not only

have an elevated mean value but it also has very low vari-

ance. Similarly, both the mean and the variance of clustering

coefficient for disease genes are significantly reduced com-

pared with those of nondisease genes. This consistency can

be seen also in that the network properties of disease genes

do not vary with age. This is in contrast to nondisease genes

that become connected to more genes with age (i.e., PC 1
and degree correlate strongly and positively with gene age).

Importantly, we also showed that the distinct age distribu-

tions of disease genes could not account for the observed

network properties. Note that the strong positive correlation

between gene age and degree for nondisease genes em-

phasizes the importance of studying PPI networks as evolv-

ing entities.

It is important to consider the possibility that disease
genes show distinct network properties because they are

better studied. We tested this possibility in several ways.

First, we did find some evidence for the inspection bias in

that the disease genes were more often named than non-

disease genes and that the named genes had a higher de-

gree. The reason for the observation that named genes have

a higher degree is not clear given that it is both possible that

known genes are indeed better studied and thus have an
artificially high degree or that more highly connected genes

are mutable to more obvious phenotypes and thus become

detected in genetic studies more often and then named. Im-

portantly, our study is not affected by this possible bias be-

cause we can show that the observed patterns are still

detectable when we focus exclusively on only named genes

in both disease and nondisease sets. In addition, when we

subsampled nondisease genes to the same level of degree as
the disease genes, disease genes still showed significantly

lower clustering coefficients compared with nondisease

genes.

We found that genes that have been detected in GWAS

studies of disease but have not been previously identified as

disease genes (Mendelian or complex disease) deviate very
slightly from nondisease genes in their network properties in

the direction of other disease genes. The weakness of this

signal is intriguing. First and foremost this might be due to

the small sample size of GWAS genes. This can explain some

but not all the weakness of the signal because GWAS genes

do have significantly weaker signal than complex disease

genes. If the weakness of the signal is not a mere question

of statistical power one can think of a number of reasons for
this pattern. First, it is possible that GWAS genes relate to

a distinct set of diseases that show distinct etiology and that

the genes that underlie these diseases behave in a distinct

manner. Second, it is possible that GWAS genes are related

to more polygenic diseases on average. However, this sec-

ond possibility does not seem very likely as the complex dis-

ease genes show the most strikingly different network

patterns that are even stronger than those of Mendelian
genes. The third possibility is that the identification of genes

associated with specific GWAS-identified SNPs has some er-

ror. This does seem likely especially given that regulatory re-

gions in the human genome are often located many tens or

even hundreds of base pairs away from the coding regions

they affect (Wellcome Trust Case Control Consortium 2007;

Eeles et al. 2008; Loos et al. 2008; Zeggini et al. 2008) and it

is not the most straightforward task to predict which gene(s)
are associated with an identified intergenic polymorphism.

In the future, disease prioritization studies such as this could

help us predict which genes located in the neighborhood of

GWAS-associated SNPs are directly and causally associated

with the studied diseases.

Taken together, we demonstrate that Mendelian and

complex disease genes have distinct and consistent proper-

ties in the PPI network. Disease genes occupy topologically
critical positions of the network as brokers that interact with

many neighboring proteins that are less connected them-

selves. It will be important to study whether such broker

genes indeed specify particularly fragile points in the net-

work. Finally, our results provide new insights for developing

powerful and discriminating approaches for prioritizing and

identifying causal genes related to human disease.

Supplementary Material

Supplementary figs. S1–S8 and table S1 are available at

Genome Biology and Evolution online (http://www.

oxfordjournals.org/our_journals/gbe/).
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