
Supplementary Material

Appendix S1: Mean First-Passage Times of a Multidimensional

Random Walk in an Arbitrary Environment

In contrast to a one-dimensional random walk process, a multidimensional walk, propagating

from a predefined starting point to another predefined end point, can take any of numerous

pathways. Clearly, the characteristics of each pathway, and in particular the walk probabil-

ities assigned to each location, determine both the dynamics of the walk along this pathway

and the likelihood of choosing it. Consider all the possible pathways from this starting point

to the end point on a given landscape. Each of these pathways can be conceived as a sim-

ple one-dimensional “landscape”, which in turn induces a specific drawdown value. We argue

that in arbitrary environments, these drawdown values will significantly differ from each other,

exhibiting a roughly exponential distribution. The essential uniqueness of drawdown trajecto-

ries is similar in nature to that obtained for upper bounds by Deuschel and Zeitouni (1999)

in the problem they handle, bearing some rough similarity to ours. This argument stems di-

rectly from the strong exponential effect of the pathway drift (manifested by the values of the

odd-ratios ρi along the pathway) on the drawdown value. We will term the pathway with

the minimal drawdown value ‘the Principal-Pathway’ and the drawdown value it induces ‘the

Principal-Pathway drawdown’. Considering the correlation between the first-passage time and

the drawdown value in one-dimensional landscapes, we thus conjecture that all pathways apart

from the Principal-Pathway are in fact irrelevant. Essentially, the random-walk process will

take place along a “sausage”-like region around that minimal drawdown pathway and can be

regarded as “almost” a one-dimensional process. The expected first-passage time will thus be

dominated by the Principal-Pathway drawdown in an analogous manner to that shown in the

one-dimensional case.

To generate rugged multidimensional fitness landscapes with a tunable drawdown value we
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use the following modified versions of the generalized Rastrigin and Schwefel functions, widely

used multimodal benchmark functions (Mühlenbein et al., 1991; Salomon, 1996; Ballester and

Carter, 2004):

FRastrigin(~x) = −Cr · d−
∑d

i=1 x2
i + Cr · cos(2πxi) Cr ∈ [1, 4]

xi ∈ {−5.0,−4.8, . . . , 0}

FSchwefel(~x) = −Cs ·
∑d

i=1(−xi sin(
√
|xi|)) Cs ∈ [0.001, 0.015]

xi ∈ {−500,−460, . . . , 420}

where d denotes the dimension (see also Fig. 2a). These modified versions are designed so that

the global optimum is located at one corner of the hypercube on which the function is defined

and the starting point can be positioned on the opposite corner, at a relatively low-fitness value.

Cr and Cs provide a simple way to control the ruggedness of the landscape (and consequently,

the drawdown value it induces).

We validate our conjecture regarding the drawdown values distribution across various path-

ways numerically, using the modified Rastrigin function defined above. A set of two-dimensional

and three-dimensional landscapes with varying drawdown values was generated. For each such

landscape, a sample of 1000 pathways from the starting point (-5,-5) to the global optimum

point (0,0) was randomly selected with uniform probability and the drawdown value of each

pathway was calculated. For simplicity, we limit our sampling to forward oriented pathways

(i.e. pathways composed of exactly d(n− 1) steps, wherein d denotes the dimension, n denotes

xi resolution in each dimension and each step is a positive step in one of the dimensions). Al-

though actual pathways may be more complex and can include also negative steps, this subset

is sufficient to demonstrate the drawdown values distribution. Furthermore, considering only

forward oriented pathways, we can calculate the Principal-Pathway drawdown using dynamic

programming whereby for each point in the multidimensional space, the Principal-Pathway
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Fig. S1: The distribution of drawdown values across randomly selected pathways on fitness
landscapes with varying ruggedness. (a-d) Drawdown values distribution on two-dimensional
landscapes with increasing ruggedness. The landscapes are generated with the modified Rastri-
gin function described above with Cr coefficient of 2.4, 3.0, 3.5 and 4 respectively. The logarithm
of the Principal-Pathway drawdown for these landscape is 3.702, 4.787, 5.692 and 6.596 respec-
tively. (e-h) Drawdown values distribution on three-dimensional landscapes with increasing
ruggedness. The Cr values and Principal-Pathway drawdowns are similar to those described in
the two-dimensional case.

drawdown to that point can be obtained according to the values calculated for points that may

preceded it in the pathway. Figure S1 illustrates the resulting distribution of drawdown values

for several landscapes. Evidently the variation in drawdown values induced by randomly se-

lected pathways is extremely large (note that the distribution is drawn on a logarithmic scale),

and increases markedly with the ruggedness of the landscape. Moreover, as predicted above, the

Principal-Pathway drawdown is markedly smaller than the drawdown of a randomly selected

pathway.
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Appendix S2: Methods

S2.1: The Evolutionary Process

A one-dimensional innate fitness function was defined on the interval [1, 200] as a sum of sev-

eral Gaussian functions, yielding a continuous, multipeaked function F (x) (Fig. 5a, solid line).

Various plasticity schemes were then applied (see below) to produce the corresponding effective

fitness functions.

The evolutionary process was simulated as a simple random walk. The RW probabilities

in each location i are calculated as: pi = BT (F+
i ) = 1/[1 + e(F−i −F+

i )/T ], qi = BT (F−
i ) =

1/[1 + e(F+
i −F−i )/T ] where F+

i = F (i + 1), F−
i = F (i − 1) (using the effective fitness function

in the plastic mode), and BT (x) denotes the Boltzmann scaling (Mitchell, 1996) with fixed

temperature T = 0.1. The genetic configuration x in the first generation of each evolutionary

trial was set to 1.

To evaluate the convergence rate of an evolutionary process numerically, two measures are

considered. First, the first-passage time of each genetic configuration provides a direct measure

of the progress rate of the evolutionary process. Second, the population mean innate fitness value

in each generation provides a good estimate for the genetic quality of the evolving individuals

and allows us to track the extent of the Baldwin effect, i.e., how well did the genetically encoded

solution approach the optimal one (Mayley, 1997). Clearly, evolving individuals in the plastic

mode are ultimately evaluated according to their effective fitness value (that is, their fitness after

phenotypic plasticity takes place), which may be higher than their innate fitness value. However,

here we focus on the rate of the evolutionary process, tracking down the genetic assimilation.

S2.2: Ideal and Partial Deterministic Learning

Ideal deterministic learning is implemented as a simple iterative hill climbing process. Hill

climbing iterations are performed until reaching the local maxima and no further improvement

is possible. Partial deterministic learning was examined using a learning scheme which applies a
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limited number of hill climbing iterations. The resulting effective fitness functions are illustrated

in Figure 5a.

S2.3: Stochastic Learning

Each individual employs 100 SA (simulated annealing) iterations during its lifespan to deter-

mine its effective fitness value. Let Si denote the individual’s current configuration. In each

iteration, one of the adjacent configurations (±1) is selected at random as a candidate for a

new configuration Sj . If F (Sj) > F (Si) the new configuration becomes the current configura-

tion. Otherwise, Sj becomes the current configuration with probability e(F (Sj)−F (Si))/T where

T denotes a temperature parameter that cools from 1 to 0 throughout the learning process.

S2.4: Random Phenotypic Variation

Given an individual with genetic configuration x, we define Fefc(x) = F (xv) where xv is ran-

domly chosen with a uniform distribution from the interval [x−∆d, x+∆d]. ∆d thus represents

the range of phenotypic variation allowed by some developmental process. This random pertur-

bation is performed anew in each generation throughout the simulation run.

S2.5: Random Walk with Static Periods

The random walk process described in Section S2.1 is extended to allow staying in the same

genetic configuration, i, with a probability zi. The RW probabilities in each location i are

calculated as: pi = BT (F+
i ) = eF+

i
/T

C , qi = BT (F−
i ) = eF−

i
/T

C , zi = BT (Fi) = eFi/T

C where

Fi = F (i) and C is a normalization factor (letting pi + qi + zi = 1).

S2.6: Random Walk with Kimura’s Fixation Probabilities

For each genetic configuration i, we calculate the selection coefficient s for each of the two

mutants (i + 1 and i − 1), s±i = F±
i /Fi − 1. We then calculate the fixation probability, u, of

each of the two mutants as follows: If |s| is small (i.e., |s| ≤ 1/Ne), we use Kimura’s fixation
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probability for neutral mutations, u = 1/(2Ne). Otherwise u = (1 − e−4Nesm)/(1 − e−4Nes),

where Ne denotes the effective population size and m = 1/2Ne denotes the initial frequency

of the mutant. In the simulations described in this study we use Ne = 100. We set the RW

probabilities, pi = u+, qi = u− and zi = 1− pi − qi.
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