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Abstract

Background: While the composition of the gut microbiome has now been well described by several large-scale
studies, models that can account for the range of microbiome compositions that have been observed are still lacking.
One model that has been well studied in macro communities and that could be useful for understanding microbiome
assembly is the competitive lottery model. This model posits that groups of organisms from a regional pool of species
are able to colonize the same niche and that the first species to arrive will take over the entire niche, excluding other
group members.

Results: Here, we examined whether this model also plays a role in the assembly of the human gut microbiome,
defining measures to identify groups of organisms whose distribution across samples conforms to the competitive lottery
schema. Applying this model to multiple datasets with thousands of human gut microbiome samples, we
identified several taxonomic groups that exhibit a lottery-like distribution, including the Akkermansia, Dialister,
and Phascolarctobacterium genera. We validated that these groups exhibit lottery-like assembly in multiple
independent microbiome datasets confirming that this assembly schema is universal and not cohort specific.
Examining the distribution of species from these groups in the gut microbiome of developing infants, we
found that the initial lottery winner can be replaced by a different member of the group. We further found
that species from lottery-like groups tend to have fewer genes in their genomes, suggesting more specialized
species that are less able to engage in niche differentiation.

Conclusions: Combined, our findings highlight the complex and dynamic process through which microbial

this process.

microbiome

communities assemble and suggest that different phylogenetic groups may follow different models during
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Background

The human gut microbiome is a complex ecosystem that
harbors hundreds of bacterial taxa and is tightly linked
to our health [1, 2]. Efforts to characterize the compos-
ition of the microbiome, using either marker gene-based
approaches or shotgun metagenomics, have found not
only compositional shifts associated with host disease,
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but also tremendous variation across healthy individuals
[1, 3]. Indeed, early attempts to identify a core micro-
biome—a set of species that are shared between all
healthy hosts—were generally unsuccessful, suggesting
that such shared species comprise only a small fraction
of the overall microbiome composition [4—6].

In an attempt to characterize patterns of such micro-
biome variation, many studies have focused on inferring
specific relationships between species, viewing the
assembly of the microbiome as an outcome of such in-
teractions [7]. Multiple studies, for example, have set out
to identify species pairs that tend to co-occur across
samples and developed methods for characterizing the
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network of such co-occurring species in the microbiome
[8-11]. Other studies have attempted to partition
microbiome species into clusters of co-occurring spe-
cies. For example, a study of the composition of the
gut microbiome post antibiotic treatment identified two
groups of species: those that are sensitive to the antibiotic
treatment and those that are resistant [12]. Similar at-
tempts in non-host-associated communities have also
found clusters of co-occurring species in each stage of the
developing apple flower microbiome [13] and clusters of
species which have similar seasonal variations in abun-
dance in the microbiome of a lake [14]. Notably, while
such studies often do not explicitly define the mechanistic
interpretation of a co-occurring group, such groups could
be thought of as ecological guilds [15], representing, for
example groups of organisms that perform a similar func-
tion within the ecosystem (e.g., different steps of the nitro-
gen cycle [16] or bioreactor degradation [17]) or that have
overlapping nutrient requirements and are co-filtered by
niche selection [18, 19].

Importantly, however, this “deterministic” assembly
model, where guilds of functionally similar species are
being selected by the environment, may not account for
the extreme variation observed in microbial communi-
ties across seemingly similar environments. An alterna-
tive perspective puts more emphasis on stochastic
effects in community assembly [20, 21]. For example,
when Caenorhabditis elegans is colonized by two select-
ively neutral bacterial strains that differ only in the pres-
ence of a marker gene, the gut community is ultimately
dominated by one or the other, suggesting that stochas-
tic forces govern the assembly of this community [22].
Moreover, recent evidence suggests that there is in fact a
balance between niche and stochastic factors in commu-
nity assembly in the microbiome [23]. One approach
that has been suggested to combine these factors is the
notion of priority effects, which states that the final
community assembly is often governed by the order at
which species arrive during colonization. For example,
the species that arrives to the community first can be-
come entrenched, preventing other species with a simi-
lar niche from joining the ecosystem. Such priority
effects have been characterized extensively in macroecol-
ogy [24, 25] and have been shown to also govern the as-
sembly of microorganisms in flower nectar communities
[26], as well as the colonization of Bacteroides species in
the mouse gut [27].

Another promising approach for combining niche and
stochastic factors in community assembly is the com-
petitive lottery model [28]. This model posits a competi-
tion within a well-defined pool of potential colonizing
species for a given niche space and that the niche can
support only a single species from this pool (as in a
strong priority effect). This model further assumes that
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the “winning” species is determined randomly (hence
the name “lottery”) owing to various stochastic processes
and, accordingly, that different geographical locations
will have different lottery winners independent of any
niche effects. This model was originally proposed to ex-
plain the ecology of reef fishes [28], in which the lottery
winner occupies a specific patch on the reef and ex-
cludes other fish from that patch. Each newly opened
patch will be similarly filled by a single fish (determined
randomly as the first to arrive) and once occupied will
not be displaced due to strong priority effects. Since dif-
ferent patches are occupied by different lottery winners
from different species, this model may account for the
coexistence of competing species across the entire reef.
Beyond reef fishes, this model has been extended to
flowering plants [29], parasites [30], and the microbiome
of the algae Ulva australis [31]. In the last case, for ex-
ample, it has been shown that the microbiome is distinct
from the surrounding seawater, implying selection for
specific niches on the algae surface, but that it also varies
tremendously between communities, suggesting that sto-
chastic forces determine the specific species that dominate
each community [32]. The researchers postulated that there
were functionally equivalent groups of bacteria and that
from each such group a single member colonized U. aus-
tralis and excluded the rest of the group.

To date, however, there has not been any effort to
systematically test the extent to which the competitive
lottery schema applies to the human gut microbiome or
to identify groups of species in this microbiome that
may follow this schema. The human gut microbiome
represents a well-defined microbial community, harbor-
ing a few hundred strains [2], and most of its members
have been fully sequenced. In analogy to the reef fish
ecosystem, a lottery-governed group of microbial species
in the human gut microbiome would account both for
specific species compositional patterns in the micro-
biome (e.g., a single group member in each host) and
observed between-host variation in species composition
(e.g., different winners occupying different hosts). More-
over, as in reef fishes, having different winners in differ-
ent hosts could explain the observed diversity of
microbial species at the host population level.

To this end, here we develop a computational frame-
work to characterize the distribution of species across
microbiome samples and to identify groups of microbial
species whose distribution potentially reflects a competi-
tive lottery schema. We defined the groups taxonomic-
ally as it has previously been found that the strongest
priority effects occur between closely related bacteria
[26]. Moreover, phylogenetically related species are more
likely to have similar sets of genes and accordingly,
similar niches. For example, it has been shown that a
group of genes that includes many ABC transporters
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and two-component systems (which are involved in sens-
ing nutrient levels and are likely related to niche space) is
primarily conserved within the Vibrionaceae family but
not in more distant relatives [33]. Similarly, a microscopy
study has shown that different Bacteroides species overlap
in spatial organization within the gut [34], further sup-
porting the notion that closely related species are more
likely to compete for a shared niche. Applying this frame-
work to thousands of metagenomic samples from the gut
microbiome, we found that indeed, different microbial
clades follow different schemas and that while most of the
common gut-dwelling microbial clades do not appear to
follow the lottery schema, several less well-studied groups
exhibit strong lottery-like-induced assembly patterns.

Results

Identifying competitive lottery-governed genera in the
human gut microbiome

Our model of microbiome assembly assumes a collec-
tion of species, which are divided into several groups.
These groups may represent phylogenetically related
species or guilds of unrelated species that compete for
similar niche space. Our model further assumes that the
abundance of each species in the microbiome is deter-
mined by a two-step assembly process. The first step de-
termines the abundance of each group based on, for
example, the total niche space available to that group
(Additional file 1: Figure S1A; note that when discussing
abundances, we are always referring to “relative” abun-
dances). Once the group abundance has been deter-
mined, a second step takes place where the abundance
of each group is divided between the group’s species fol-
lowing a specific schema, which could be the competi-
tive lottery schema (Additional file 1: Figure S1B) or
some other unknown schema. These schemas reflect
within-group ecological processes such as competition for
this niche space or commensal interaction. Importantly,
we assumed that different groups may be governed by
different schema but that the same group is governed by
the same schema in all samples (reflecting inherent eco-
logical or functional attributes of that group). We further
assumed that the two assembly steps are completely inde-
pendent and focus on identifying the ecological processes
that govern the second step of assembly.

To assess the applicability of the competitive lottery
schema to the human gut microbiome, we obtained a
dataset of 8638 gut microbiome samples that have been
assayed using 16S rRNA sequencing from the American
Gut project [35]. From this data we selected those sam-
ples with at least 5000 reads, resulting in a total of 7781
samples. The data had been clustered by QIIME [36]
into operational taxonomic units (OTUs) using closed
reference clustering. We further filtered OTUs with low
abundance or that do not appear in many samples (see
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the “Methods” section). We additionally conducted a
robustness analysis, demonstrating that various param-
eter choices in processing these data did not qualitatively
impact our findings below (see Additional file 2: Supporting
Text and Additional file 3: Figure S2A).

As noted above, we assumed that groups are defined
phylogenetically and initially consider each genus as a sin-
gle group (later expanding our definition to higher-level
taxonomic groups). Indeed, phylogenetically related spe-
cies are likely to have similar niches, tend to have similar
gene content, and often have similar metabolic capacities,
ultimately giving rise to intense within-group competition
[18, 37, 38]. Furthermore, priority effects are strongest be-
tween phylogenetically related groups of species [26].
Clearly, such phylogenetic grouping may not capture all
groups of microbes with a similar niche and in some cases
unrelated species may form important functional guilds,
yet such guilds are challenging to define rigorously and
are therefore ignored in our analysis below.

To assess whether the distribution of OTU abundances
within each genus reflects assembly by a competitive lottery
schema, we note that under this schema, OTU distribution
is expected to exhibit two key characteristics: (i) in each
sample (or at least in most samples), the group’s abundance
is expected to be captured primarily by a single group
member (the “lottery winner”) and (ii) different samples are
expected to have different lottery winners. In our analysis
below, we define lottery winners as OTUs that capture >
90% of the group abundance (and see Additional file 2:
Supporting Text and Additional file 3: Figure S2B for justi-
fication and sensitivity analysis). Given this definition, we
examined the distribution of OTU abundances within each
genus and assessed the two characteristics above by calcu-
lating two measures: (i) winner prevalence—the fraction of
samples in which one OTU was assigned >90% of the
genus abundance—and (ii) winner diversity—the normal-
ized diversity of lottery winners (see the “Methods” section
for complete details).

Plotting these two measures for each genus revealed
several intriguing patterns (Fig. 1). Specifically, we found
a number of genera with very high winner prevalence
(i.e., where a lottery winner is observed in the vast ma-
jority of samples). For example, in Akkermansia, 99% of
samples have one OTU occupying more than 90% of the
group’s abundance (and in fact, in 94% of samples, the
winner OTU occupies more than 99% of the group
abundance). Similarly, in Serratia, in 91% of the samples,
one OTU captures >90% of the abundance. Interest-
ingly, some of the genera with a high winner prevalence
represent relatively poorly studied members of the gut
microbiome, such as Phascolarctobacterium which is a
non-typical gram-negative member of the gram-positive
Firmicutes phylum. In contrast, most well-studied
genera in the gut microbiome (e.g., Bacteroides and
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Fig. 1 A scatter plot of the winner prevalence and winner diversity for different genera in the American Gut data. The winner prevalence is defined as the
fraction of samples in which a winner OTU (an OTU occupying more than 90% of the group’s abundance) is observed. The winner diversity is defined as
the Shannon diversity of the winner distribution (i.e, the frequency as which each OTU occurs as the lottery winner among all samples in which a lottery
winner is observed). The winner diversity was normalized by the maximum diversity (log, of the number of winners, representing the Shannon diversity if
all winners are observed at the same frequency) and hence range from 0 to 1. A low diversity suggests that the same OTU occurs as the lottery winner in
all samples, while a high diversity suggests a more even frequency of different OTUs as lottery winners

Prevotella from the Bacteroidetes phylum and Faecali-
bacterium, Blautia, and Oscillospira from the Firmicutes
phylum) have a relatively low winner prevalence, with
only a few (<25%) of the samples having a single OTU
capturing >90% of the group abundance. While the
assembly of these taxonomic groups could be governed
by a number of different mechanisms, these findings
suggest that it does not involve complete competition-
derived exclusion. We further examined the relationship
between the winner prevalence and the number of
OTUs in the group. Naturally, the smaller the number
of OTUs in a group, the more likely it is that one of these
OTU reaches > 90% abundance, and indeed, there is some
correlation between these two properties (Additional file 4:
Figure S3). Yet, there are some groups with many OTUs
that exhibit high winner prevalence (e.g., Pseudomonas
that includes 19 OTUs and still have winner prevalence of
0.75) and others with relatively few OTUs that exhibit
low winner prevalence (e.g., Veillonella that includes 6
OTUs and still have winner prevalence of 0.19). More-
over, repeating this analysis while considering only the

3 most abundant OTUs in each genus suggested that
while the number of species plays a role in winner
prevalence, it does not account for the observed separ-
ation between low and high winner prevalence genera
(Additional file 2: Supporting Text, Additional file 3:
Figure S2C, and see also Additional file 5: Figure S4
below). Notably, we found no evidence suggesting that
our identification of competitive lottery groups has
been affected by the group rarity or low abundance
(Additional file 4: Figure S3).

Next we turned to examine the winner diversity of the
various genera, focusing primarily on genera with high
winner prevalence. As expected, some of these genera
(e.g., Haemophilus) exhibit extremely high winner preva-
lence but extremely low winner diversity (Fig. 1). Put dif-
ferently, each of these genera is dominated by the same
high-abundance OTU across all samples and is accord-
ingly inconsistent with the competitive lottery schema.
We also observed that groups with low winner preva-
lence generally have comparatively higher winner diver-
sity, likely reflecting sampling effects. Importantly,
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however, some high winner prevalence genera (e.g.,
Akkermansia and Serratia) also exhibit high winner di-
versity, reflecting different winners in different samples,
as expected by the competitive lottery schema. Notably,
the lottery schema does not necessarily entail maximum
winner diversity (ie, winner diversity score of ~1,
reflecting a scenario where all winners occur at the same
frequency), but rather a plurality of winners at poten-
tially different frequencies (and see examples below).

To more closely explore the structure of genera with
high vs. low winner prevalence (and high vs. low winner
diversity), we further examined the distribution of OTUs
in each genus, highlighting the different patterns govern-
ing OTU abundances (Fig. 2). In Akkermansia (a genus
identified above as having a high winner prevalence and
high winner diversity), for example, a single OTU clearly
occupies the majority of this genus’ abundance in each
sample and the lottery winner OTU varies from sample
to sample, as predicted by the competitive lottery
schema (Fig. 2a). This is in sharp contrast to genera with

Page 5 of 17

very low winner prevalence such as Blautia, where the
group abundance is more evenly distributed among the
group OTUs (note that in Fig. 2a, samples and OTU are
ordered to emphasize any potential lottery pattern). The
difference in OTU distribution between these two gen-
era is even clearer when visualizing the fraction of the
group abundance captured by the most abundant OTU
in the sample and comparing it to the abundance of the
other OTUs (Fig. 2b). Indeed, in Akkermansia, the most
abundant OTU in each sample generally captures ~
100% of the group’s abundance, whereas in Blautia, the
most abundant OTU generally coexists with other OTUs
(Fig. 2b). We again confirmed that this is not an artifact
of the higher number of OTUs included in Blautia com-
pared to Akkermansia (see Additional file 2: Supporting
Text and the plots for these two genera in Additional file 5:
Figure S4). To further quantify this effect, we calculated
the Shannon diversity observed in each sample within
these genera, again demonstrating a markedly skewed
distribution toward low diversity (namely a single
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Fig. 2 Distribution of within-group abundances in a representative lottery-like genus (Akkermansia) and in a non-lottery-like genus (Blautia). a
Heatmaps showing the normalized within-group abundance of OTUs in the Akkermansia and Blautia genera. Here we only show the three most
abundant OTUs of Blautia for ease of comparison with Akkermansia. The bar plots on the top indicate the sum of the genus abundance in each
sample. Only samples in which the genus’ abundance is > 0.5% were included. Samples have been ordered first by the identity of the most
abundance OTU (with vertical lines separating set of samples with different most abundant OTU) and second within each such set of samples by
decreasing abundance of that most abundant OTU. b Point plots showing the normalized abundance of OTUs in each genus across samples.
Samples have been ordered in an identical way to that described in a. The dashed red line denotes the 0.9 cutoff used to define lottery winners.
In contrast to a, here we included all OTUs in the group. ¢ A histogram displaying the Shannon entropy of the within-group abundances within
each sample for Akkermansia and Blautia. The red dotted line corresponds to the Shannon diversity in an idealized group in which the
abundances of all OTUs are uniformly spread
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OTU) in Akkermansia compared to a more even dis-
tribution observed in Blautia (Fig. 2c). Examining the
distribution of OTU abundances across all genera
further revealed both additional clear cases of lottery-
based assembly and more complex patterns (Fig. 3 and
Additional file 5: Figure S4). For example, OTU abun-
dance distributions in Phascolarctobacterium, Serratia,
and Dialister exhibit all the hallmarks of lottery-based
assembly, including complete exclusion and high diver-
sity of winners. In contrast, in Acinetobacter and in
Porphyromonas, some OTUs show nearly complete
exclusion, whereas others show very little exclusion.

Page 6 of 17

Finally, the OTU distribution in Haemophilus clearly
reflects the single lottery winner suggested by the
genus’ low winner diversity reported above.

Identifying higher-level competitive lottery-governed
taxonomic groups

To more comprehensively characterize the ecological
processes that are at play in the assembly of the gut
microbiome, we next examined whether a similar lottery
schema may govern the assembly of higher-level taxo-
nomic groups. Indeed, our initial focus on genus-level
groups was arbitrary, and a broader characterization of
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taxonomic groups across the microbial tree of life can
provide a more complete picture of the assembly mecha-
nisms of the human gut microbiome. Such a charac-
terization will also allow us to examine the consistency
of assembly schemas across different taxonomic lineages
and to identify interesting patterns in the evolution of
assembly rules.

To this end, we extended our model above to assess
the assembly schema of each taxonomic group in a hier-
archical manner. Specifically, just as we had assessed the
winner prevalence and winner diversity for genus-level
groups of OTUs, we assessed the winner prevalence and
winner diversity for higher order taxonomic groups (e.g.,
a specific family) by looking at the abundance of differ-
ent subgroups of that group (e.g., a single genus) and the
abundance of each subgroup in each sample. Notably,
with this definition, we considered the abundance of the
subgroup regardless of how its abundance is distributed
among the subgroups’ members (and accordingly regard-
less of the winner prevalence and winner diversity of the
subgroup itself). Put differently, when calculating these
parameters for a given group, we considered each of its
subgroups as a single entity (whose abundance is simply
the sum of abundances of the subgroup’s member).

Applying this extended method to the dataset de-
scribed above and examining taxonomic groups at vary-
ing levels up to the phylum level revealed complex and
intriguing patterns of community assembly (Fig. 4). Not-
ably, at higher phylogenetic levels, we found many
groups with high winner prevalence but low winner di-
versity (Fig. 4a and compare with Fig. 1), reflecting a sin-
gle dominant subgroup. For example, the phylum
Bacteroidetes, the class Clostridia, and the family Bacil-
laceae are each dominated by a single subgroup (the
class Bacteroidia, the order Clostridiales, and the genus
Bacillus, respectively) in nearly all samples (Fig. 4b). Yet,
several groups at these higher phylogenetic levels, in-
cluding the orders Burkholderiales and Pseudomona-
dales and the family Comamonadaceae, again exhibited
the hallmarks of a lottery-based assembly, with both
high winner prevalence and high winner diversity
(Fig. 4a). Indeed, examining the distribution of sub-
groups in these lottery-like groups clearly demonstrates
that only a single subgroup from each group dominates
each sample, but that different samples are dominated
by different subgroups (Fig. 4c). Other groups exhibited
strong coexistence with multiple subgroups co-occurring
in each sample (e.g., the order Clostridiales) or more
complex assembly combining both exclusion and co-
existence patterns (e.g., the phylum Proteobacteria;
Additional file 6: Figure S5).

Note also that our definition above allows for complex
hierarchical patterns of assembly schemas (Additional file 7:
Figure S6). For example, the order Lactobacillales exhibits
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clear coexistence patterns with multiple families from
this order co-occurring in each sample, yet some of
these families (e.g., Lactobacillaceae and Streptococca-
ceae) in turn exhibit lottery-like assembly, with only
one genus from each family present in each sample
(Additional file 6: Figure S5 and Additional file 7:
Figure S6). Furthermore, while the family Streptococca-
ceae exhibits lottery-based assembly, with the genus
Streptococcus generally excluding the genus Lactococcus,
the different OTUs in the genus Streptococcus tend to
coexist (see Fig. 3).

Assembly schemas are consistent across multiple datasets
We next set out to confirm that our findings are not
specific to the American Gut data due to cohort-specific
population structure or study-specific protocols. For
example, in the American Gut project, samples have
been collected without freezing, in contrast to most
other large-scale microbiome studies. Such differences in
sample preservation could impact growth conditions
post-egestion and ultimately affect observed within-
group abundance distributions. Similarly, different se-
quencing methods or different computational processing
pipelines could impact inferred community composi-
tions and introduce bias into the estimated lottery pa-
rameters. To this end, we further obtained several other
microbiome datasets, characterized the assembly of
phylogenetic groups in each such dataset, and compared
the obtained lottery parameters across datasets (Fig. 5).
Notably, different datasets may include a somewhat dif-
ferent set of OTUs and accordingly a different set of
groups that can be compared given our filtration
process. We first considered an independent 16S-based
gut microbiome dataset, obtained from a twin study in
the UK [39]. We focus on this dataset because of the
large number of samples (n =1017 using the same 5000
read cutoff as above). Calculating the lottery measures
defined above for all groups in this dataset, we found a
strong correlation between the lottery prevalence param-
eter in the American Gut data and in the UK twins data
(Fig. 5a, p =0.93; Spearman correlation test), suggesting
that a similar suite of groups may be assembled accord-
ing to a lottery-like model. We next considered the
human microbiome project (HMP; [1]), which is com-
monly used as a benchmark for human microbiome
studies. Again, we found a strong correlation between
the lottery prevalence values calculated for the HMP
and the American Gut dataset (Fig. 5a, p =0.91). Since
species interactions that give rise to a lottery-like distri-
bution probably primarily occur between species that
are at close proximity, we further considered a gut
microbiome dataset that was obtained from biopsies [40]
(rather than fecal samples), allowing us to evaluate
whether our findings hold in microbiome profiles
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Fig. 4 Winner prevalence, winner diversity, and subgroup abundance distribution for higher-level taxonomic groups. a A scatter plot of the
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(See figure on previous page.)

SILVA annotations (right). Details are the same as in Fig. 5a

Fig. 5 Robustness of winner prevalence parameter. a A heatmap showing the winner prevalence parameter for each group across multiple
independent datasets. Groups that are missing in a given dataset are displayed as white cells. The taxonomic order of each group is in
parentheses next to the group name as in Fig. 4a. b The within-group abundance of members of the genus Prevotella. Details are as in

Fig. 2b. ¢ The within-group abundance of members of Coriobacteriaceae and Enterobacteriaceae in two infant individuals with lottery winner
turnover. Both individuals are found in [42]. d A heatmap showing the winner prevalence in the UK twins dataset when processed by QIIME
with GreenGenes annotations (left), when processed by Deblur with GreenGenes annotations (middle), and when processed by QIIME with

sampled from regional microenvironments in the gut.
Even though this dataset is naturally substantially
smaller (n =23 after our filtration process), we still found
a good correspondence between the winner prevalence
parameter in these biopsy samples to those calculated
based on the American Gut data (Fig. 5a, p = 0.85).

Finally, we considered microbiome data from several
infant cohorts ([41-44] and see Methods). We again
found a significant correlation between the winner
prevalence parameter in this infant dataset and the adult
data analyzed above (Fig. 5a, p =0.53 for the American
Gut data). Interestingly, however, we also found a num-
ber of notable differences between this infant dataset
and the adult datasets. For example, Prevotella has a low
winner prevalence in the American Gut, UK twins, and
HMP datasets, but a much higher winner prevalence in
the infant dataset (Fig. 5b), suggesting that while the de-
veloping gut microbiome in infants can support only a
single species from that group, the adult microbiome
can potentially support multiple coexisting species from
that group. It is also worth noting that winner preva-
lence values are generally somewhat higher in the infant
dataset compared to the adult datasets for many groups,
potentially suggesting different assembly dynamics com-
pared to adults. This is in agreement with various stud-
ies demonstrating that infant microbiomes are less stable
and less diverse than the adult established microbiome
[42, 45, 46]. To further explore these dynamics, and
thanks to the multiple samples per individual available in
the infant dataset, we set out to examine whether lottery
winners are stable or transient in infants (“Methods” sec-
tion). Examining the lottery winner over time, we found
examples of lottery-winner turnover. For example, in one
individual, the initial winner in the family Coriobacteria-
ceae—the genus Eggerthella—is later replaced by the
genus Collinsella, while in another individual, a turnover
in the family Enterobacteriaceae is later reverting back to
the initial winner (Fig. 5¢). However, such examples are
relatively rare, with turnovers observed in only 35 out of
the 287 examined individual-group pairs (“Methods” sec-
tion). Notably, such turnovers were not observed in adult
samples with multiple time points from the HMP dataset
(out of 70 analyzed).

We also examined how the winner diversity parameter
changes between these different datasets. Notably, this

parameter is not necessarily expected to be highly corre-
lated between different cohorts since the distribution of
winners may depend on the prevalence of different taxa
in these populations and may be more influenced by dif-
ferences in sample collection and preservation. Indeed,
while we found a significant correlation between the win-
ner diversity values obtained for the American Gut and
the UK datasets (p =0.67, P<5 x 1079, comparison with
other smaller datasets was not statistically significant.
Nonetheless, many of the groups that exhibited high win-
ner diversity (>0.25) in the American Gut data also exhib-
ited high winner diversity in other datasets (30 out of 38
in the UK dataset, 24 out of 28 in the infant dataset, and
18 out of 22 in the HMP dataset).

Finally, we sought to investigate whether our results
are sensitive to the OTU processing approach and taxo-
nomic annotations used (Fig. 5d). We focused on the
UK twin dataset discussed above (which was originally
clustered into OTUs by Qiita and annotated by the
GreenGenes taxonomy) and examined whether using in-
stead a sequence denoising approach (Deblur; [47]) or a
different taxonomy (SILVA; [48]) impacts the obtained
lottery parameters. We found a strong and significant
correlation between the lottery parameters obtained in
the original UK twin datasets to those obtained with se-
quence denoising or SILVA (lottery prevalence p =0.93
and p = 0.77, respectively; lottery diversity p = 0.70 and p
=0.50, respectively), suggesting that our findings are not
an artifact of a specific processing pipeline. Moreover,
the few instances where groups displayed substantial dif-
ferences in winner prevalence (e.g., Porphyromonada-
ceae, which exhibited high winner prevalence when
annotated with GreenGenes but low winner prevalence
when annotated with SILVA) appear to occur due to
additional annotations to these groups in SILVA.

Genomic determinants of group assembly

Why would the niche space available to lottery-like
groups such as Akkermansia, Dialister, and Phascolarc-
tobacterium only support a single OTU, while the niche
space available to non-lottery-like groups such as Bacter-
oides, Parabacteroides, and Faecalibacterium allows
multiple species to colonize the same community? One
possibility is that coexisting species can exploit a more
diverse set of resources and therefore partition their



Verster and Borenstein Microbiome (2018) 6:186

niche, allowing multiple species to inhabit it [18, 49].
Species in lottery-like groups, in contrast, may have a
narrower and overlapping nutritional niche, promoting
fierce competition and mutual exclusion. This hypoth-
esis is also in line with previous theories concerning the
different strategies specialists and generalists species
may employ to compete for nutrients. For example, a re-
cent large-scale metabolic modeling-based study of bac-
terial ecological strategies has demonstrated that
metabolic variability is correlated with growth rate and
with competition [50]. It suggested that microorganisms
may adopt one of two strategies: a specialist strategy that
is associated with little co-habitation (analogous to our
lottery-like schema) or a generalist strategy that is asso-
ciated with fast growth and intense co-habitation (analo-
gous to our non-lottery-like schema). Similarly, an assay
discussing oligotrophs vs. copiotrophs (organisms that
thrive in nutritionally poor vs. rich environments, re-
spectively) suggested that one of the key reasons under-
lying the different environments in which such
organisms survive has to do with the efficiency with
which they compete for certain nutrients [51].

Since the nutritional niche of most lottery-like group
species has not been comprehensively characterized to
date, we tested this hypothesis using genomic data, as-
suming that the size of a species’ genome can serve as a
proxy for its ability to exploit a broad range of resources
[18, 50, 52]. To facilitate this analysis, we linked each
OTU to a reference genome from NCBI using BLAST
(“Methods” section). We additionally obtained genome
annotation data for these genomes from the Integrated
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Microbial Genomics database (IMG, [53]; Methods). To
avoid the complexities associated with hierarchical taxo-
nomic levels, we only considered genus-level groups.
We then focused on genera that had high winner diver-
sity (> 0.25, i.e., ignoring groups with a single fixed win-
ner) and compared the genomes of species from genera
with high (>0.75) vs. low (<0.75) winner prevalence in
the American Gut dataset and at least one other of the
datasets analyzed above.

This analysis demonstrated that species in lottery-like
genera have significantly fewer genes compared to spe-
cies in non-lottery-like genera (Fig. 6a; P < 0.005). This
simple, yet important difference between species in lot-
tery vs. non-lottery-like groups is in agreement with our
hypothesis above, suggesting that competitive lottery
groups tend to represent more specialized and streamlined
species that cannot partition their niche. Furthermore, we
found that this difference in the number of genes is not
uniform for all genes and that it is much more pro-
nounced for genes without a KO annotation, suggesting
that the coexistence of species in non-lottery-like groups
may involve novel and yet-to-be-characterized mecha-
nisms (Fig. 6b; P < 0.05 for KO-annotated genes, P < 0.005
for genes with no KO annotation).

Discussion

In this paper, we used a simple model for the assembly
of the human gut microbiome to assess how well differ-
ent groups follow the competitive lottery schema. We
found that the canonical microbiome members from the
Bacteroidetes and Firmicutes phyla do not appear to be
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governed by a lottery-like schema but rather support a
non-lottery-like assembly that supports significant coex-
istence among members. This result is perhaps not sur-
prising given the current state of knowledge of the
microbiome and numerous studies that report various
species coexistence patterns and analyses [54]. Import-
antly, however, we did find a substantial number of taxo-
nomic groups that exhibit lottery-like distribution,
including the genera Akkermansia, Dialister, and Phasco-
larctobacterium. In these lottery-like genera, the entirety
of the group’s abundance quota is occupied by a single
OTU (though this OTU may be different in each sam-
ple), and all other members are excluded from the com-
munity. Notably, a few of the identified lottery-like
groups, such as Phascolarctobacterium, tend to be
understudied compared to the non-lottery-like groups
and relatively little is known about their ecology, niche,
and interactions with other species. Other lottery-like
groups are relatively well characterized, such as Akker-
mansia, whose members are metabolically flexible and
play a role in the host metabolic health [55]. Moreover,
some of the identified competitive lottery groups have
unusual properties. For example Dialister and Phasco-
larctobacterium from the Veillonellaceae family are
gram-negative members of the gram-positive Firmicutes
phylum, and yet form endospores, which is generally
considered a gram-positive trait [56].

Why might some taxonomic groups allow for multiple
members to occupy a given host, while in others a single
species outcompetes and excludes other members of the
group? Ecological theory posits that species can coexist
within a host (or a “patch”) when stabilizing niche differ-
ences are greater than relative fitness differences [49].
Restricting our attention to stabilizing niche differences
and particularly resource partitioning, we can consider
the niche of a species as the set of nutrient metabolites
that it can grow on, as postulated by the nutrient niche
model [57]. Given this model, it is easy to see how a
non-lottery-like group such as the Bacteroides has parti-
tioned resources between related species. Specifically,
Bacteroides are known sugar metabolizers and have ex-
perienced an incredible expansion in the number of
polysaccharide utilization loci (PULSs) encoded in their
genomes [58]. In Bacteroides thetaiotaomicron for ex-
ample, these genes constitute 18% of the genome [59].
This expansion likely allows the exploitation of a diverse
array of nutrients since different glycoside hydrolase
(GH) enzymes encoded in these PULs are specific for
different bonds in glycan polymers [60]. The presence of
different PULs in different species could accordingly
promote diversification in the set of nutrients each spe-
cies utilizes and ultimately permit coexistence. Indeed,
in vitro work suggests that different species of Bacter-
oides prefer different glycans as a food source and
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preferentially transcribe corresponding PULs, enabling
coexistence [61]. With this hypothesis in mind,
lottery-like groups that appear to be able to maintain
only a single representative per sample likely prohibit
coexistence since they are unable to engage in resource
partitioning. For example, it has been suggested that
carbohydrate degradation might be a part of the niche of
Megasphaera [62], a genus that we have identified as be-
ing likely governed by the lottery schema. Moreover,
examining the genomes of Megasphaera species, we
note that they encode on average only 4.25 GH enzymes,
compared to 192 GH enzymes on average encoded by
members of the non-lottery-like group Bacteroides (data
not shown), further supporting the narrower niche of
competitive lottery groups.

These observations are in agreement with our findings
of different genome size in lottery-like vs. non-lottery-like
groups. Expanded gene content in the non-lottery-like
groups could allow for niche diversification around a com-
mon theme of nutrients, such as through PUL expansion
in Bacteroides. Similarly, the non-lottery-like groups from
the Firmicutes phylum appear to be generalists based on
their genomic content [38] and thus have ample oppor-
tunity for niche diversification. Lottery-like groups such as
Akkermansia, Dialister, and Phascolarctobacterium on the
other hand are likely existing on a very narrow set of nu-
trients without any such opportunities for resource parti-
tioning, hence their smaller genomes. This is consistent
with previous findings that generalists have larger ge-
nomes than specialists [63]. Extreme cases of narrow
niches are associated with exceptionally small genomes
such as the less than 1000 genes in the epibiotic TM7x
[64]. This hypothesis is also in agreement with the trend
toward a larger number of genes without a KO annotation
in the non-lottery-like groups, which likely are playing a
disproportionately larger role in niche diversification com-
pared to genes with KO annotations that are more com-
monly involved with fundamental cell biology and core
metabolism. It should also be noted that our study has fo-
cused on phylogenetically defined groups, and accord-
ingly, our identified lottery-like groups represent potential
competition between closely related species. Indeed, a
model-based study of predicted metabolic environments
has found a substantial agreement between phylogenetic
relatedness and similarity in nutritional requirements [65].
Yet, some taxonomic groups may experience stronger
competition from phylogenetically distant but metabolic-
ally similar taxa (e.g, due to convergent evolution),
potentially outweighing within-group competition and
accordingly exhibiting non-lottery-like patterns.

Interestingly, in the original formulation of the com-
petitive lottery model in reef fishes, patches are domi-
nated by a single fish and this enables coexistence of
multiple fish species across the entire reef. By analogy,
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in the microbiome ecosystem, each host corresponds to
a patch and the population of hosts corresponds to the
entire reef. With this in mind, competitive lottery-based
exclusion within each host might lead to maintenance of
competing and functionally similar species at the host
population level and ultimately to a larger pool of di-
verse species across the population.

Notably, with the strictest view of the competitive lot-
tery schema, it is unlikely that an established strain can
be eliminated from the community, since strong priority
effects exclude all invaders from the same group. Yet,
given the instability associated with the developing
microbiome of an infant gut, our finding of lottery win-
ner turnover in this setting and the imperfect fit to the
ideal competitive lottery schema are perhaps not com-
pletely unexpected. Previous work has found that the
gut community approaches an adult-like composition by
12 months of age, but is generally considered to con-
tinue developing until 36 months of age [42, 43]. Indeed,
a previous study of Bacteroides fragilis found that the
dominant B. fragilis strains are not stable in the develop-
ing infant gut and can be replaced by other strains
throughout the course of development [46], and similar
dynamics have been observed in other species [42].

Recent years have witnessed multiple studies aiming to
characterize co-occurrence relationships in the human
gut microbiome [8, 9, 66]. Our group-based assembly
model provides a complementary approach to such
co-occurrence studies for understanding community
composition. While there are some similarities between
our analysis approach and co-occurrence detection
methods, they differ in several elements and in the
underlying assumptions made. Most importantly,
co-occurrence methods focus on interactions between
pairs of OTUs whereas our approach assesses interac-
tions within an entire group of OTUs. As such, the bio-
logical insight gained from co-occurrence studies tends
to relate to pairwise biochemical dependencies [9] or
cross-feeding interactions [18, 67, 68], while the insight
from our study relates to the ecological processes acting
on a group of organisms as a whole.

It is also worth noting that our model implicitly makes
a number of assumptions about the forces and processes
at work during microbiome assembly. First, since we are
using a group-level assembly model, most assumptions
relate to the importance of groups in the microbiome.
Specifically, we assume that species are part of guild-like
groups and that these groups are the primary determin-
ant of how community assembly occurs. Furthermore,
we assume that microbial interactions occur primarily
within the groups and that between-group interactions
do not impact without group interactions and assembly.
We also assume that groups are governed by a coherent
ecological assembly model that applies to every member
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of the group in an identical way. With regard to our reli-
ance on metagenomic data (mostly 16S), we additionally
assume that such data provide reasonable estimation of
each species’ abundance, ignoring potential noise in
abundance estimation. This is clearly not ideal, but since
the competitive lottery schema entails an order of mag-
nitude difference between the abundance of the lottery
winner and the abundances of other species in the
group, such metagenomic-based abundance estimates
are likely sufficient for most groups. Moreover, since
noisy abundance estimation likely has the strongest
impact on very low abundance groups (where sam-
pling error could be substantial), we used a simulation
study to determine a reasonable OTU inclusion cutoff
(Additional file 8: Figure S7) and only considered
groups with high enough abundance.

Our analysis has focused on testing a simple assembly
schema and on identifying groups that are likely governed
by the lottery schema. Importantly, however, there are
likely many other processes that are at play in the assem-
bly of the human gut microbiome. Moreover, while the
competitive lottery assembly schema assumes that strong
priority effects lead to complete exclusion of all species
beyond the first, it is important to note that priority effects
can also have different outcomes. For example, positive
priority effects, where a colonizing species aids subsequent
species to join the ecosystem, may give rise to highly
structured communities. For example, the plant Jacobaea
vulgaris alters the soil conditions allowing other plant spe-
cies to flourish [69]. There could also be a complex mix-
ture of positive and negative priority effects that depend
on the exact species of the group. For example, the oral
bacterium Porphyromonas gingivalis usually cannot grow
in the presence of Streptococcus oralis, but it is able to co-
exist with S. oralis in the presence of S. gordonii [70]. Fur-
thermore, our hierarchical method shows that assembly
schema can impose different structuring forces at different
taxonomic levels, and thus, identifying the scope at which
any given assembly schema can function is an avenue for
future research.

Conclusions

Beyond the findings described above, our study demon-
strates the utility of a computational approach for
understanding assembly processes in the human gut. Spe-
cifically, by assessing the competitive lottery schema and
its fit to observed distribution of species abundances
across samples, we were able to identify taxonomic groups
that appeared to conform to this schema and others that
diverged significantly from it. Future studies following this
approach could further assess additional processes that
are governing the assembly of the microbiome and their
contribution to microbiome composition.
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Methods

Species abundance data

We downloaded processed 16S rRNA data from the
Qiita database which has applied QIIME to detect closed
reference OTUs at the 97% identity level [36]. Obtaining
data from Qiita ensured uniformity of preprocessing
across samples and datasets and in a way that is in har-
mony with the practices of the field. Specifically, we
downloaded data from the American Gut project [35], a
large study of twin microbiomes from the UK [39]. Fi-
nally, we obtained a dataset of biopsy samples from the
human colon [40], as well as data from the Human
Microbiome Project [1], and applied QIIME to detect
closed reference OTUs at the 97% identity level. We
removed samples with less than 5000 16S counts and fil-
tered any OTU that did not appear at >0.05% abun-
dance in 0.5% of samples (to a minimum of 10 samples),
resulting in a total of 1514 OTUs across 7781 samples
from the American Gut project, 1201 OTUs across 1017
samples from the UK twins study, 793 OTUs across 284
samples from the HMP dataset, and 78 OTUs across 23
samples for the biopsy data for downstream analysis. To
focus on taxonomic groups for which statistical analysis
could be robust, we further filtered groups that did not
have > 0.5% abundance in at least 0.5% of samples (to a
minimum of 10 samples). Furthermore, due to the large
number of groups in the American Gut data, for simpli-
city, only groups that had >0.5% abundance in > 200
samples were included in our analysis.

We defined groups of OTUs using the lineage assign-
ments that had been precomputed in Qiita from
QIIME’s closed reference mapping to GreenGenes [71].
OTUs were assigned to groups based on the genus that
was assigned, and OTUs that could not be assigned to a
known genus were removed from genus-level analysis.
When working with MetaPhlAn data, we used the tax-
onomy that had been assigned to each species.

To evaluate the robustness of our findings to OTU
preprocessing and annotation, we obtained a copy of the
UK twins data that had been processed using a sequence
denoising approach by Deblur [47] via Qiita. We add-
itionally obtained the original sequence reads from this
database, clustered them into OTUs using QIIME, and
taxonomically annotated the obtained OTUs using the
SILVA database [48]. Cutoffs were applied as described
in the previous paragraph.

We also obtained shotgun metagenomic samples from
infant microbiomes that were sampled over time. These
were amalgamated from a number of different studies
including a study of vertical inheritance [41], a study of
autoimmune diseases [42], a study of antibiotic usage
[43], and a study of the development of type 1 diabetes
[44]. MetaPhlAn 2.0 was run on these samples to assess
species-level abundance with default parameters. Using

Page 14 of 17

similar filtering criterion as with the 16S data described
above resulted in 437 OTUs across 171 samples for
downstream analysis. In our turnover analysis, we only
considered those individuals with at least two time
points with at least 0.5% group abundance for each
group, resulting in 287 individual-group pairs in the in-
fant dataset and 70 in the HMP dataset for downstream
analysis. For these individual-group pairs, we looked for
at least two time points with different lottery winners
dominating the community (>90% abundance). How-
ever, when visualizing the data, we kept the full comple-
ment of time points from that subset of individuals in
our analysis.

Assessing characteristics of lottery-like species
distribution

Our model aims to describe the observed abundance of
the most prevalent OTUs across microbiome samples
based on an assembly process such as the competitive
lottery schema. We assume that this assembly process
determines the abundances of OTUs within a given
group and that the same group follows the same process
in all samples. Specifically, we assume a two-step model:
in the first step, the total abundance of a sample (100%)
is allocated between groups according to some unknown
process. Then in the second step, the abundance allo-
cated to each group is split between the group’s mem-
bers according to a competitive lottery schema.

Given a pre-defined group of species, we quantified
two parameters that relate to the competitive lottery as-
sembly schema. The first parameter is how often species
distribution within a group includes a lottery winner,
which we define as a group member that captures > 90%
of the group’s abundance. This cutoff was chosen based
on a null model for species abundances assuming a stick
breaking process (see Additional file 2: Supporting Text).
The second parameter is a measure of the diversity of
lottery winners and is calculated by the Shannon diver-
sity of the distribution of winners across samples (i.e.,
the frequency as which each OTU or subgroup occurs
as the lottery winner among all samples in which a lot-
tery winner is observed). The winner diversity was nor-
malized by the maximum diversity obtained when all
winners are observed at the same frequency (=log, of
the number of winners) and hence range from 0 to 1. A
low diversity suggests that the same OTU or subgroup
occurs as the lottery winner in all samples, while a high
diversity suggests a more even frequency of different
OTUs or subgroups as lottery winners.

To determine the assembly schema of groups at higher
taxonomic level than genera, we applied a similar ap-
proach considering the aggregated abundance of each
subgroup as if it were a single OTU. For example, when
evaluating the schema governing each family, we
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considered the aggregated abundance of each of its gen-
era. OTUs without annotation to a given subgroup have
been discarded to avoid combining the abundance of
OTUs from two different unknown lineages. If there was
only a single subgroup in a given group, we refrained
from the analysis of a single member group and pro-
gressed to the next level of the tree.

In analyses that required -classifying groups into
lottery-like vs. non-lottery-like groups, we defined
lottery-like groups as those that exhibit winner preva-
lence >0.75 and winner diversity > 0.25. In our analysis
of genome content, we specifically focused on groups
that exhibit lottery-like assembly in both the American
Gut dataset and at least one other dataset of those ana-
lyzed above.

Genome analysis

We obtained 16S sequences from the partial or complete
genomes of 76,657 bacteria from NCBI. In order to map
OTUs from a group to sequenced genomes, we used
BLAST against the database of 16S sequences and ac-
cepted the best hit above 97% identity. We then ob-
tained information on gene content on those genomes
from Integrated Microbial Genomics (IMG) [53] and av-
eraged gene content number over each species.

Additional files

Additional file 1: Figure S1. A conceptual illustration of the
competitive lottery assembly model. In the first stage, the total
abundance of each sample (100%) is split between a set of pre-defined
groups. In the second stage, each group’s abundance allocation is split
between its subgroups according to the competitive lottery schema
where a single subgroup receives the majority of the group’s abundance
allocation. (PDF 51 kb)

Additional file 2: Supporting text. (PDF 185 kb)

Additional file 3: Figure S2. Robustness of the winner prevalence
estimate to different cutoffs. Bar plots show how the winner prevalence
value changes for different genera if the cutoff was changed for OTU
inclusion (A), for the lottery winner determination (B), and when only the
three most abundant OTUs in each genera are considered (C). (PDF 33
kb)

Additional file 4: Figure S3. Number of OTUs and abundance of the
genera that were analyze in Fig. 1. The left panel illustrates the winner
prevalence of each genus (as reported in Fig. 1). The middle panel
illustrates the number of OTUs in each group (after filtration of rare OTUs;
see the "Methods” section), as well as the number of OTUs that have
been lottery winners (> 90% of the group abundance) in at least one
sample. Finally, the right panel illustrates the distribution of the overall
group abundance across all samples in the American Gut data. (PDF 274
kb)

Additional file 5: Figure S4. Distribution of within-group abundances
for all genera when considering only the three most abundant OTUs in
each genus. Details are as in Fig. 3. (PDF 772 kb)

Additional file 6: Figure S5. Distribution of within-group abundances
for higher-level taxonomic groups. Details are as in Fig. 4b, c. (PDF 813
kb)

Additional file 7: Figure S6. A taxonomic tree, with assembly
parameters displayed as pie charts. On each group that was analyzed in

Page 15 of 17

our study, we display the proportion of samples where different group
members were lottery winners (> 90% abundance) using different colors.
The proportion of samples without a winner is illustrated in white. With
this visualization, the winner prevalence parameter is therefore denoted
by the proportion of non-white pie chart, and the winner diversity parameter
is proportional to the number and distribution of different colors in the pie
chart. Groups without a pie chart were only used as subgroups to groups with
pie charts. The tree was created with the interactive tree of life [72].

(PDF 73 kb)

Additional file 8: Figure S7. Winner prevalence estimates in simulated
groups at uniform abundance. Abundances have been simulated using a
Poisson distribution assuming that OTUs are at a variable minimum
abundance threshold (x-axis). If abundance estimates were perfect, we
would expect a winner prevalence of zero, but noise associated with the
sampling processes creates artificial winners. The dashed red line is the
minimum abundance threshold used in our study. (PDF 18 kb)
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