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ABSTRACT Correlation-based analysis of paired microbiome-metabolome data sets
is becoming a widespread research approach, aiming to comprehensively identify
microbial drivers of metabolic variation. To date, however, the limitations of this ap-
proach and other microbiome-metabolome analysis methods have not been com-
prehensively evaluated. To address this challenge, we have introduced a mathemati-
cal framework to quantify the contribution of each taxon to metabolite variation
based on uptake and secretion fluxes. We additionally used a multispecies metabolic
model to simulate simplified gut communities, generating idealized microbiome-
metabolome data sets. We then compared observed taxon-metabolite correlations in
these data sets to calculated ground truth taxonomic contribution values. We found
that in simulations of both a representative simple 10-species community and com-
plex human gut microbiota, correlation-based analysis poorly identified key contrib-
utors, with an extremely low predictive value despite the idealized setting. We fur-
ther demonstrate that the predictive value of correlation analysis is strongly
influenced by both metabolite and taxon properties, as well as by exogenous envi-
ronmental variation. We finally discuss the practical implications of our findings for
interpreting microbiome-metabolome studies.

IMPORTANCE Identifying the key microbial taxa responsible for metabolic differ-
ences between microbiomes is an important step toward understanding and manip-
ulating microbiome metabolism. To achieve this goal, researchers commonly con-
duct microbiome-metabolome association studies, comprehensively measuring both
the composition of species and the concentration of metabolites across a set of mi-
crobial community samples and then testing for correlations between microbes and
metabolites. Here, we evaluated the utility of this general approach by first develop-
ing a rigorous mathematical definition of the contribution of each microbial taxon
to metabolite variation and then examining these contributions in simulated data
sets of microbial community metabolism. We found that standard correlation-based
analysis of our simulated microbiome-metabolome data sets can identify true contri-
butions with very low predictive value and that its performance depends strongly
on specific properties of both metabolites and microbes, as well as on those of the
surrounding environment. Combined, our findings can guide future interpretation
and validation of microbiome-metabolome studies.
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Microbial communities have a tremendous impact on their surroundings, ranging
from the degradation of environmental toxins (1) to the production of climate

change-relevant metabolites (2). Host-associated communities, in particular, have a
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substantial impact on their hosts and often produce a diverse set of metabolites that
interact with numerous host pathways. In humans, such microbiome-derived metab-
olites have been identified as factors contributing to a wide array of diseases, including
heart disease (3), autism (4), nonalcoholic fatty liver disease (5), colon cancer (6),
inflammatory bowel disease (7), and susceptibility to infection (8). Characterizing the
ways microbial communities modulate their environments and the relationship be-
tween community structure and metabolic impact is therefore a major, timely, and
complex challenge with promising implications for human health, as well as for
environmental stewardship, agriculture, and industry.

In facing this challenge, perhaps the most important task is identifying specific
community members that drive variation in metabolites of interest. Taxa responsible for
observed metabolic differences across communities may be ideal targets for interven-
tions aiming to modify metabolic phenotypes. Their identification, however, can be a
daunting task. Complex microbial communities are often composed of hundreds or
thousands of poorly characterized species, each with a unique and frequently unknown
complement of metabolic capacities. Even when multiple species are known to possess
the potential to synthesize or degrade a metabolite of interest, the metabolic activity
of each species (and, consequently, its contribution to metabolic variation) may be
different (9). Moreover, community ecology, interspecies interactions, and nutrient
availability (e.g., via diet) can all regulate and influence the metabolic activity of each
species, rendering the link between community members and metabolic products
extremely complex and challenging to infer (10–12).

To address this challenge and to identify community members that play an impor-
tant role in metabolic variation, a growing number of studies are now comprehensively
assaying multiple facets of community structure across samples, including, most nota-
bly, taxonomic and metabolite compositions (13). For example, many recent studies
have combined fecal microbiome profiling with metabolomics and dietary data to
characterize metabolic interactions between diet and the human gut microbiome (11,
14–16). Others have applied these technologies to investigate the links between
taxonomic shifts and metabolic phenotypes in nongut body sites, including the vaginal
and oral microbiomes (17, 18), as well as non-human-associated microbial communities
(19, 20). These are just a few examples of a plethora of recent microbiome-metabolome
studies, investigating the metabolic effects of microbiome variation in the contexts of
chronic and infectious disease, antibiotic resistance, agriculture, precision medicine,
nutrition, fermented food science, and more (21–30). Such multi-omic studies are also
a major focus of several large-scale initiatives to study both host-associated and
environmental microbiomes (31, 32).

Given the taxonomic and metabolomic profiles obtained via such microbiome-
metabolome assays, the vast majority of studies rely on simple univariate correlation-
based analyses to link variation in community ecology to variation in metabolic activity
(11, 17, 21, 33–37). Such analyses specifically aim to identify species whose abundance
across samples is correlated with the concentration of metabolites, often assuming that
highly significant correlations reflect a direct mechanistic link between the taxon and
the metabolite in question. It is not uncommon for these studies to further suggest that
positive correlations imply synthesis and negative correlations imply degradation or
that targeting the microbe in question could modulate the concentrations of the
metabolites with which it is correlated. In one recent example, a large microbiome-
metabolome study of inflammatory bowel disease patients and controls posited that an
association between a microbial and a metabolite that is observed among both patient
and control subgroups is evidence of a mechanistic relationship corresponding to
direct metabolism, selection, or ecological inhibition of other species (36). Similarly,
another study characterizing the microbiome and metabolome in Spleen-yang-
deficiency syndrome (37) concluded that a positive correlation between Bacteroides
and mannose likely resulted from extracellular degradation of mannan into mannose
by that taxon; also, a study of antibiotic perturbations to the microbiome and metabo-
lome stated that the presence of several weak positive and negative correlations
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between genera and arginine supported the conclusion that arginine levels may be
affected by many community members with high functional redundancy (33).

Yet, to date, the extent to which a correlation-based analysis effectively detects
direct metabolic relationships between taxa and metabolites has been unclear. Obvi-
ously, a strong correlation between the abundance of a certain species and the
concentration of a metabolite across samples might reflect direct synthesis or degra-
dation of the metabolite by that species but might also arise due to environmental
effects, precursor availability, selection, random chance, or co-occurrence between
species. Similarly, cross-feeding, external host processes, and differing enzymatic reg-
ulation characteristics can mask a correlation even when the species does in fact
contribute to observed metabolite variation. Indeed, previous studies have suggested
that microbe-metabolite correlations must have a high rate of false positives (38), and
recent experimental studies pairing microbiome-metabolome correlation analysis with
in vitro monoculture validations found anecdotally that several observed correlations
were in fact false positives or that the hypothesized mechanistic relationship could not
be confirmed (36, 39). The limitations of correlation analysis have also been discussed
and well characterized in other data types (see, for example, references 40 and 41).
Importantly, however, the extent of such limitations in the context of microbiome-
metabolome studies, the ways they are shaped by microbial community metabolism,
and their impact on data interpretation in this context have not been systematically
evaluated. Such context-specific validation has been recently highlighted as an impor-
tant growth area in genomics and bioinformatics (42).

Two crucial challenges hinder a comprehensive and systematic evaluation of
correlation-based analysis. The first challenge is the lack of a rigorous general definition
of a microbe’s contribution to metabolite variability. While establishment of the main
taxonomic contributors to metabolite variation may be straightforward for specialized,
well-characterized metabolites that are synthesized by just a single taxon, it can be
much less clear for metabolites that can be synthesized (and/or degraded or modified)
by many different taxa in the community. Ideally, we would hope to identify which taxa
have the largest effects on the levels of a metabolite, while accounting for their
covariance in abundance and activity. The second challenge is the absence of ground
truth data on the nature of microbe-metabolite relationships. While limited data on the
taxa driving metabolite shifts can be obtained from comparative mono- and coculture
studies (39, 43, 44), large-scale and comprehensive data sets that link species and
metabolite abundances in the context of a complex community, for which the precise
impact of each species on observed metabolite variation is known, are currently not
available.

In this report, we address these two challenges, combining a novel framework for
quantifying microbial contributions with model-based simulated data sets. Specifically,
we first introduce a generalizable and rigorous mathematical framework for decom-
posing observed metabolite variation and quantifying the contribution of each com-
munity member to this variation based on uptake and secretion fluxes. Second, we use
a dynamic multispecies genome-scale metabolic model to simulate the metabolism of
microbial communities of various complexity and to generate idealized data sets of
paired taxonomic and metabolomic abundances, with complete information on me-
tabolite fluxes, microbial growth, interspecies interactions, and environmental influ-
ences. Applying our mathematical framework to these simulated data sets, we then
compare calculated contribution values to observed taxon-metabolite correlations and
evaluate the ability of correlation-based analyses to identify key microbial contributors.
We additionally investigate factors that shape the relationship between community
composition and metabolism in depth and analyze the data to identify specific prop-
erties and mechanisms that can impact the performance of microbiome-metabolome
correlation studies.

Notably, given the objectives of this study, we intentionally focus on characterizing
microbiome-metabolome relationships in a model-based, tractable, and well-defined
setting. Indeed, our metabolic model may not perfectly capture all of the complex and
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diverse mechanisms that are at play in host-associated communities; however, consid-
ering the scope of this study, accurately recapitulating the metabolism of a specific
community may not be crucial. Rather, for our analysis, we want our simulated data to
capture broad trends observed in naturally occurring microbial ecosystems, as indeed
has been demonstrated for several similar dynamic simulation frameworks (45–48).
Moreover, utilizing this model-based approach allows us to dissect the relationship
between community composition and metabolic phenotypes without the complexities
inherent in in vivo communities (including spatial heterogeneity, measurement error,
intermicrobial signaling, or strain-level variation). To this end, we first analyze simulated
data sets from a set of “toy”-model, simplified microbiomes and then compare our
findings with those from a more complex and realistic human gut-based data set.
Analyzing the ability of a correlation-based analysis to detect true microbial drivers of
metabolite variation in simplified, best-case settings provides a baseline for the ex-
pected performances of such analyses in real microbiome-metabolome studies.

RESULTS
Quantifying the impact of individual microbial species on variation in metab-

olite concentrations. In this study, we consider a microbial community as an idealized
system, consisting of a population of multiple microbial species in a shared, well-mixed,
biochemical environment. Each species takes up necessary metabolites from the shared
environment, performs a variety of metabolic processes to promote its growth, and
secretes certain metabolites back into the shared environment. We additionally assume
that certain nutrients flow into the environment and that microbial cells and metab-
olites are diluted over time. These processes can represent, for example, the inflow of
dietary nutrients and the transit through the gut in the context of the gut microbiome.
For simplicity, we primarily consider constant inflow and dilution rates, as in a chemo-
stat setting. Accordingly, a microbiome-metabolome study can be conceived as ana-
lyzing a set of several such communities (at a certain point in time), all with differing
compositions of microbial species and correspondingly differing environmental me-
tabolite concentrations. We focus initially on a naive and highly controlled setting with
identical nutrient inflow across all microbiomes but later examine the impacts of
differences in nutrient inflow between communities.

Given this setting, we first sought to establish a rigorous and quantitative framework
for defining the impact of each microbial species (or any taxonomic grouping) in the
community on the variation observed in the concentration of a given metabolite across
community samples. We focused on species that directly modulate the environmental
concentration of a given metabolite via synthesis or degradation, ignoring indirect
effects via, for example, the synthesis of a precursor substrate that could impact the
metabolic activity of other species. We noted that the total concentration of any
metabolite in the environment can be represented as the sum of cumulative synthesis
or degradation fluxes of this metabolite mediated by each of the n species in the
community, as well as cumulative environmental fluxes (e.g., total nutrient inflow and
dilution). Formally, the concentration of a given metabolite M can therefore be ex-
pressed as a sum of n dependent random variables mi, where each mi value denotes the
overall synthesis or degradation of the metabolite by each species (with mi values of
�0 for synthesis and mi values of �0 for degradation), along with an additional random
variable menv, denoting the overall impact of environmental processes, as follows:

M � �
i�1

n

mi � menv

As discussed above, in analyses of microbiome-metabolome data sets, the goal is
often to identify taxa responsible for changes in the concentration of a metabolite of
interest across a set of samples. Accordingly, here we quantify the contribution of each
species to the variance in the concentration of that metabolite across samples. Specif-
ically, in the formulation above, var(M) depends on the variance of the constituent
microbial and environmental factors, as well as on the covariance between these
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components. This variance can then be linearly separated into n � 1 terms, represent-
ing the contribution of each species (denoted ci), and of any environmental nutrient
fluxes (denoted cenv), to the total variation in the metabolite as follows:

var�M� � �
i�1

n

ci � cenv ;

ci � var�mi� � �
j�i

cov�mi, mj� � cov(mi, menv)

Each contribution value is also equivalent to the covariance between the fluxes of
the corresponding factor with the total concentration (see Materials and Methods). If
the nutrient inflow is constant across samples, its effect can be ignored and its
contribution to the variance cenv is 0. Additionally, while the concentration of metab-
olites is also affected by dilution, in a chemostat setting, its effect can be accounted for
in the calculation of each contribution, as it depends strictly on the fixed dilution rate
and on previous metabolite concentrations (see Materials and Methods). Finally, in
order to compare species contributions across metabolites and to represent the relative
share of the total variance of a given metabolite that is attributable to species I, we
defined the relative contribution to variance ĉi of each species i to metabolite M by
normalizing contribution values by the metabolite’s total variance as follows:

ĉi �
ci

var(M)

This framework for calculating microbial contribution values provides a systematic
measure of the causal impact of each taxon on observed variation in the environmental
concentration of each metabolite, distilling the effect of complex ecological and
metabolic interactions to a concise and interpretable set of quantities. Moreover, the
obtained contribution profile represents a linear decomposition of observed metabolic
variation, wherein the sum of contributions of all species equals the observed variance
in the metabolite. A large positive contribution value therefore indicates that the
species in question was responsible for a substantial share of the observed variation in
the concentration of the metabolite. Notably, under the definition provided above,
contribution values can be negative when the activity of a given species has large
negative covariances with the activities of other community members. Such negative
contribution values indicate that the secretion or uptake of that metabolite by the
species mitigates the impact of the activity of others. Correspondingly, contribution
values can be greater than 1, reflecting scenarios in which a species in fact generates
more variation of this metabolite than is ultimately observed but the impact is
mitigated by other species.

It is also worth noting that our analytical decomposition of contributions to variance
is mathematically equivalent to calculating the Shapley values for the variance in
metabolite concentrations (see Materials and Methods; see also Fig. S1 in the supple-
mental material). Shapley value analysis is a game theory technique that defines an
individual’s contribution to a collective outcome and has been shown to be the only
general definition that is efficient, linear, and symmetric and that assigns zero values to
null contributors (49). A similar, Shapley value-based approach was recently applied
to address the related problem of identifying the primary taxonomic contributors to
differential functional abundances in metagenomic data (50).

A multispecies metabolic model for generating complex microbiome-
metabolome data. We next set out to generate a large-scale data set of microbiome-
metabolome profiles with complete information about metabolite uptake and secre-
tion fluxes. To this end, we used a multispecies metabolic model to simulate the
growth, dynamics, metabolism, and environment of a simple microbial community. As
noted above, in this model (and in the resulting data set), we aim to recapitulate broad
metabolic trends and the complex relationships that can occur between microbial taxa
and metabolites rather than to perfectly capture the metabolism and behavior of a
specific microbial ecosystem. This model is based on a previously introduced genome-
scale framework for modeling the metabolism of multispecies communities and for
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tracking the metabolic activity of each community member over time (51, 52; see also
references 53 to 55). Briefly, this framework assumes that each species optimizes its
growth selfishly given available nutrients in the shared environment and predicts the
metabolic activity for each species in small time increments using flux balance analysis
(FBA) (56). After each increment, the model uses the predicted metabolic activities of
the various species to update the biomass of each species and the concentration of
metabolites in the shared environment (and hence potentially impacting the growth
and metabolism of other species in subsequent time steps). Importantly, this model
enables the natural emergence of metabolic competition and exchange between
species, as well as selection for taxa with the most efficient growth characteristics in a
given nutrient environment. Full details of this model and simulation parameters can
be found in Materials and Methods.

We first specifically modeled a simplified gut community that had previously been
explored experimentally (57). This community includes 10 representative gut species,
spanning the major clades found in the human gut and collectively encoding the key
metabolic processes taking place in this environment, including breakdown of complex
dietary polysaccharides, amino acid fermentation, and removal of fermentation end
products via sulfate reduction and acetogenesis. Genome-scale metabolic models of
these 10 species were obtained from the AGORA (assembly of gut organisms through
reconstruction and analysis) collection (48)—a recently introduced set of high-quality
gut-specific metabolic reconstructions. To mimic the experimental gnotobiotic mouse
setting (57), we simulate growth in a chemostat, with a nutrient inflow mimicking the
content of a standard corn-based mouse chow and a dilution rate consistent with
mouse transit time and gut volume (see Materials and Methods). While maintaining this
nutritional environment, we systematically explored the landscape of possible commu-
nity compositions, adjusting the initial relative abundance of each species from 10% to
60% (with a consistent total abundance equal to the community carrying capacity),
which facilitated clearly interpretable mechanistic links between initial species abun-
dances and final metabolite concentrations, resulting in a total of 61 different commu-
nity compositions. For most analyses, we simulated growth for 144 h (as 576 15-min
time steps). For most community compositions considered, this simulation duration
consisted of an initial stabilization period leading to near-steady-state conditions, with
little change in community composition (Fig. 1A). Notably, across the various simula-
tions, some species maintained high abundances throughout the course of the simu-
lation whereas others reverted to lower levels.

Throughout the course of each simulation, we recorded the abundances of each
species, the rates of secretion and uptake of each metabolite by each species (as well
as internal reaction fluxes), and the concentration of each metabolite in the environ-
ment (Fig. 1), thereby obtaining a comprehensive data set representing species com-
position, metabolic activities, and metabolite concentrations across 61 different com-
munities. To mirror the typical structure of a microbiome-metabolome cross-sectional
data set, we specifically considered the abundances of species and the concentrations
of metabolites in the environment at the end of each simulation (i.e., after the final time
point; see Fig. 1). Of the 68 metabolites present in the nutrient inflow, 60 exhibited at
least some variation across communities, as did 18 additional microbially produced
metabolites. Metabolite variation was generally low (median coefficient of variation,
0.021), reflecting the uniform nutrient environment, and yet 25 metabolites (32%) did
have a coefficient of variation greater than 0.1. For downstream analysis, we excluded
metabolites without substantial measurable variance across samples, filtering those
with variance at or below the 25th percentile. This resulted in a data set of 52 variable
metabolites, of which 14 were purely microbially produced metabolites, 9 were micro-
bially produced but also present in the nutrient inflow, and 29 were introduced only
through the nutrient inflow. Of these 52 variable metabolites, 47 were utilized by at
least one member of the community (including 18 that were cross-fed in at least one
simulation). The final species compositions and the final concentrations of several key
metabolites across all simulations are shown in Fig. 2.

Noecker et al.

November/December 2019 Volume 4 Issue 6 e00579-19 msystems.asm.org 6

 on D
ecem

ber 18, 2019 at 74762133
http://m

system
s.asm

.org/
D

ow
nloaded from

 

https://msystems.asm.org
http://msystems.asm.org/


Exploring this data set, we found that species compositions and metabolite con-
centrations exhibited complex patterns and biologically plausible distributions (Fig. S2)
(58), although the initial species abundances did result in an unusual variance structure
(and see also our discussion of this structure below). Nevertheless, examining the
obtained metabolic processes, we found that several processes known to occur in the
mammalian gut were replicated by our simulations, including, for example, conversion
of acetate to butyrate by Eubacterium rectale (59) and production of key microbial
metabolites such as 4-aminobutyric acid (GABA), indole, and succinate. Cross-feeding
relationships (corresponding to 18 metabolites) were also observed frequently, includ-
ing cross-feeding of 6 amino acids whose exchange is widespread in host-associated
microbiota (60). We additionally ran several sets of simulations with introduced fluc-
tuations in the nutrient inflow concentrations (described in a separate section below)
and found that the resulting species compositions partially recapitulated the diet
responses observed by Faith et al. (57) (see Text S1 in the supplemental material).

Clearly, the model and simulations described above represent gross simplifications
of the microbiome’s structure, dynamics, and function. Importantly, however, the
simplification is also a strength. Specifically, the data obtained from these simulations
provide a unique opportunity to examine the relationship between community dy-
namics and metabolic activity in a tractable model of community metabolism where
complete information about the activity and fluxes of each microbial species is avail-
able (Fig. S3). Indeed, our multispecies model captures many of the intricacies of
bacterial genome-scale metabolism and the interconnectedness (both within and
between species) of multiple metabolic processes and yet does so without the addi-
tional complexities inherent in in vivo communities. Furthermore, in our initial set of

FIG 1 Simulating multi-omic data with a dynamic multispecies genome-scale framework. (A) Community species abundances throughout
a single 10-species simulation run. Abundances were quantified in units of microbial biomass. In this simulation, community composition
was initialized with a high relative abundance of Eubacterium rectale. For visual clarity, only every eighth time step is illustrated. Species
abundances at the final time point (highlighted with larger colored circles) were used for calculating species-metabolite correlations. (B)
Cumulative secretion and uptake of acetate by each community member, throughout the same simulation run as that illustrated in panel
A. Acetate was synthesized by several species and consumed by E. rectale over the course of the simulation. Cumulative fluxes at the final
time point (highlighted with larger colored circles) were used for calculating species contributions to metabolite variation. The bottom
plot illustrates the resulting environmental concentration of acetate at each time point. The metabolite concentration at the final time
point (highlighted with a larger black triangle) was used for calculating species-metabolite correlations.
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simulations, variation in the concentrations of environmental metabolites resulted
exclusively from microbial metabolic activity, with no variation in nutrient inflow or
other nonmicrobial sources, providing a controlled setting for evaluating the relation-
ship between community members and metabolite concentrations.

FIG 2 Species abundances, cumulative fluxes, and contributions to variance in metabolite concentrations in the 10-species simulated data set. (A) The data
set of species abundances at the final time point of 61 simulation runs. Each bar represents a simulation run, with the colors indicating relative abundance of
each species. The abundance profile from the simulation runs highlighted in Fig. 1 is indicated with an asterisk. (B to F) For five example metabolites, namely,
putrescine (B), tetradecanoate (C), uracil (D), acetate (E), and succinate (F), the upper plot shows the total cumulative secretion or uptake of that metabolite
by each species across all 61 simulation runs (or samples), and the lower plot shows the corresponding environmental concentration at the final time point.
The bar plots on the right show the contribution values for each species and metabolite calculated from the flux values and describing the linear contribution
of each species to the overall metabolite variance.
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Metabolite variation is driven by diverse microbial mechanisms. Given the
simulated data set described above (for which uptake and secretion fluxes are known),
we applied our contribution framework to calculate the contribution of each species to
the variation observed in each of the 52 variable metabolites (Fig. S4). The resulting
contribution values can be used as ground truth information about the link between
microbial activity and environmental metabolites.

To highlight the nature and utility of such contribution values, and to demonstrate
how metabolic fluxes translate into contribution profiles, we first describe our results
for several example metabolites (Fig. 2). Putrescine, an amino acid fermentation prod-
uct, is an example of the simplest case, in which one microbial species—Escherichia
coli—synthesizes a metabolite that is not utilized or modified by other community
members. Variations in the environmental concentrations of putrescine were hence
fully determined by the level of secretion from E. coli, which is therefore assigned a
relative contribution value of 1 (Fig. 2B). Tetradecanoic acid, in contrast, was introduced
(at a constant rate) via the nutrient inflow and utilized by the three Bacteroides species
in the community to various degrees (primarily by B. ovatus and to a slightly lesser
extent by B. thetaiotaomicron). The calculated contribution values successfully attrib-
uted variations in the environmental concentrations of this metabolite to these three
species and correctly captured the differences in the magnitudes of their effects
(Fig. 2C). Variations in concentrations of uracil, another metabolite introduced via the
nutrient inflow, were mainly driven by large shifts in its uptake by B. ovatus, but this
effect was partially masked by E. rectale, which reduced its uptake when B. ovatus’
uptake flux was high and vice versa. Other species also utilized uracil, but at relatively
similar levels across samples, with correspondingly little impact on its variation. These
patterns were all captured by the contribution profile obtained by our framework, with
B. ovatus assigned a high positive contribution, E. rectale assigned an intermediate
negative contribution (reflecting its role in compensating for the effects of B. ovatus),
and other species assigned relatively negligible contribution values (Fig. 2D). More-
complex species-metabolite relationships were also accurately and effectively summa-
rized. Contribution values for acetate, for example, reflected the cross-feeding interac-
tions that underlie variations in its concentrations (Fig. 2E). It was introduced to the
shared environment by several species (primarily Cenarchaeum symbiosum), but most
of its variation ultimately depended on the level of uptake by E. rectale. Finally, the
contribution profile of succinate demonstrates how extremely strong interspecies
interactions can produce contribution values much greater than the observed variance
(Fig. 2F). In the simulated data, this metabolite was synthesized by Blautia hydrog-
enotrophica but was almost always fully utilized by other community members. The
contribution calculations suggest that if the synthesis of succinate by B. hydrog-
enotrophica had not been offset by uptake from other species, the variance in succinate
concentration across samples would have been 71.7 times higher than that actually
observed. (Note that the difference between positive and negative is always 1.)

Examining the complete set of variable metabolites and calculated contribution
values revealed similar patterns of interactions (Fig. S4). Specifically, as for the metab-
olites discussed above, negative contributions and/or contribution values greater than
1 were widespread. Nearly all metabolites (50 of 52) had at least one species with a
negative contribution value, and 36 had at least one species with a contribution value
greater than 1. Of the 32 other metabolites with negative contributions, 29 were
present in the nutrient inflow and their negative contributions resulted from compe-
tition between species for their uptake. This prevalence of negative and extreme values
suggests that strong negative interspecies interactions have substantial impacts on
metabolite concentrations and that an observed variation in a given metabolite’s
concentration often represents the complex outcome of multiple species generating
and offsetting much higher variation.

Note also that while the average metabolic uptake/secretion flux of each species
and the magnitude of its contribution to the concentration of a given metabolite were
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generally significantly correlated (Spearman, P � 0.01 for 49 of the 52 metabolites), the
species with the highest flux was often not the largest contributor to variation (26 of
the 52 metabolites). Similarly, the variance in a species’ flux was significantly correlated
with its contribution for 48 of the metabolites, but for 9 metabolites the species with
the most variable flux was still not the largest contributor (due to differences in
whether the variable flux generated by one species was compensated by variation in
the flux of another). These findings suggest that even if the magnitude and variation of
species uptake and secretion fluxes across a set of microbiome samples are known
(rather than just the abundances of species, which is the only measure usually assayed),
metabolic interdependence between species could still make true contributor species
challenging to identify.

Combined, the observations described above highlight the complex relationship
between species activity and measured metabolite concentrations, demonstrating the
important role of both direct and indirect species interactions.

Correlation analysis is limited in its ability to detect true microbial contributors
to metabolite variation. Given our observations described above, we next set out to
comprehensively assess how accurately pairwise correlation analysis (commonly used
for analyzing microbiome-metabolome data) can detect true taxonomic contributors to
metabolite variance in this data set. Following numerous microbiome-metabolome
studies (17, 28, 30, 34), we considered identifying species-metabolite relationships as a
classification task, aiming to identify for each metabolite the set of species that are
primarily responsible for the variation observed in its concentration across samples. To
this end, true key contributor species for each metabolite were defined as those with
a contribution value representing greater than 10% of the total positive contribution
values, resulting in a set of 83 species-metabolite key contribution links. On average,
each metabolite had only 1.6 key contributors (Fig. S5), even though 7.5 species on
average had utilized or synthesized each metabolite at any point. A total of 31.3% of
key contributions occurred via synthesis reactions, 66.3% via utilization, and 2.4% (2
instances) via both processes. To mimic a typical microbiome-metabolome correlation
analysis, we then calculated the Spearman rank correlations between species abun-
dances and metabolite concentrations across samples and used a P value threshold of
0.01 to define significant correlation between species and metabolites. This produced
a set of 191 significant species-metabolite correlations, representing putative species-
metabolite links. Several examples of these species-metabolite abundance relationships
are shown in Fig. S6.

Comparing this set of significant species-metabolite correlations to the set of
species-metabolite key contributors clearly illustrated the difficulty of using univariate
associations to infer mechanistic contributions (Fig. 3). Indeed, of the 191 significant
species-metabolite correlations, the vast majority (141) were false positives (corre-
sponding to a positive predictive value of only 26.2%) and did not represent true
contributor relationships (Fig. 3A). Moreover, more than a third (51 of 141) of these
false-positive species-metabolite pairs had no mechanistic connection; i.e., the species
did not ever use or produce the metabolite with which it was correlated. Furthermore,
for 12 variable metabolites (of 52), none of the key contributors were successfully
detected by a correlation analysis. The overall accuracy was somewhat higher (66.5%),
reflecting the high number of non-contributors that were also not correlated. Using a
stricter cutoff (P � 0.0001, equivalent to a Bonferroni-corrected value of 0.05) improved
the positive predictive value only to 33% and the accuracy only to 77.1%. Indeed, a
receiver operating characteristic (ROC) curve analysis (Fig. 3B) produced an area under
the curve (AUC) value of 0.72, and overall correlations and scaled contribution values
were only weakly associated (Fig. 3C), suggesting that the impact of these findings can
be mitigated only partially by changing classification thresholds.

Notably, metabolites of different classes had generally similar correspondences
between correlations and contributions (Fig. 3D). Similarly, key contributors corre-
sponding to purely microbially produced metabolites were not identified more accu-
rately than those corresponding to metabolites in the nutrient inflow (66% versus 67%),
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which is perhaps not surprising since we used a constant inflow across samples (but see
also our analysis below with variable inflow). Moreover, the total variance in a metab-
olite was not associated with the accuracy or predictive value for that metabolite
(Spearman rho, P � 0.1). Across species, contributions were identified most accurately
for Desulfovibrio piger, which had a relatively low number of contributions (Fig. 3E; see
also Fig. S5C), but the positive predictive value was nonetheless �50% for all species.

Importantly, we additionally confirmed that our findings do not represent an artifact
of various specific aspects of our simulation and analysis frameworks, obtaining similar
results across several variants (Text S1) (Fig. S5 and S7). First, we evaluated the use of
an alternative classification task, aiming to detect all microbes that affect variation in a
given metabolite across samples regardless of whether their effects are ultimately
reflected in the observed concentrations (i.e., those with large positive or negative
contributions), resulting in similar findings (Text S1) (Fig. S5). To assess the impact of
dynamic shifts over the duration of each simulation, we also calculated an alternative
set of contribution values based on the net steady-state metabolite flux rates at the
final time point of each simulation, finding again results that were extremely similar to
those determined for the contributions to cumulative variations in concentrations (Text
S1). Similarly, we profiled the effects of model simulation parameters on correlation
results, including the simulation length and the maximum enzymatic rate Vmax, yet
again finding minimal effects on contribution and correlation results (Text S1) (Fig. S7).

Finally, since our data set is highly structured by the pattern of initial species
abundances, we also performed a stratified correlation analysis across groups of
samples to confirm that our findings cannot be explained by this variation structure
alone. Specifically, we classified samples into subgroups based on the most abundant
initial species and calculated species-metabolite correlations within each such sub-

FIG 3 Species-metabolite correlations poorly predict species contributions to metabolite variation. (A) The number of species-metabolite pairs that were
significantly correlated (left bar) or not correlated (right bar) and its correspondence with true species-metabolite key contributors (indicated by gray shading).
(B) Receiver operating characteristic (ROC) plot, showing the ability of absolute Spearman correlation values to classify key contributors among all
species-metabolite pairs. FPR, false-positive rate; TPR, true positive rate. (C) Scatter plot of species-metabolite pairs, showing the poor correspondence between
true contribution values (x axis) and Spearman correlation (y axis). Key contributors are plotted as blue points and others as hollow circles. Dashed lines show
significant correlations (P � 0.01). Species-metabolite pairs with a contribution value greater than 3 in magnitude whose values are not shown. (D and E)
Accuracy and positive predictive value of Spearman correlation analysis for detecting true key contributors across metabolite classes (D) and for each of the
10 species (E).
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group. Inspired by the approach used in a recent large-scale microbiome-metabolome
study (36), we considered a species-metabolite association to represent a confirmed
link if it was both significant (at a cutoff with the same false-discovery rate [FDR] as
applied previously) and in a consistent direction across all sample subgroups. Using this
strict classification, only 2 species-metabolite pairs were identified as confirmed links,
and only 1 of the 2 pairs represented a key contributor. Similarly, 11 associations were
consistent across at least 9 of the 10 subgroups, among which 4 pairs were true key
contributors. These observations suggest that such a cross-group strategy could po-
tentially improve predictive value to some extent but would do so at the cost of a
substantial decrease in sensitivity.

Accuracy of correlation-based analysis is species and metabolite specific. Our
analysis described above demonstrated that correlations between species abundances
and metabolite concentrations can be poorly associated with the true contribution of
species to metabolite variation. We therefore next investigated the origins of such
discrepancies. We specifically examined whether individual metabolites or species are
predisposed to produce a significant species-metabolite correlation when the species
in fact does not contribute to that metabolite variation (i.e., false positives) or to mask
such correlation when the species does in fact contribute to this metabolite variation
(i.e., false negatives) and, if so, what species and metabolite properties are linked to
those outcomes.

To determine whether the identity of the species or metabolite in question is
associated with inaccurate identifications of key contributors, we used a regression-
based analysis. Specifically, we considered all species-metabolite non-contributor pairs,
and fitted a logistic regression model to predict whether a species-metabolite pair
exhibited significant correlation (false positive), based on species identities or on
metabolite identities or both (see Materials and Methods). We then compared these
three models using a likelihood ratio test (LRT) to assess whether species and/or
metabolite identities were informative. We similarly considered all species-metabolite
key contributor pairs separately, again fitting a logistic regression model based on
species identities or on metabolite identities or both to predict whether a pair failed to
exhibit significant correlation (false negative).

For non-contributors, we found that false positives were able to be explained largely
by species identity (LRT for inclusion of species terms, P � 10�13). Incorporating both
species and metabolite identities did not significantly improve the model (LRT for
metabolite terms, P � 0.72). This finding suggests that false positives—i.e., correlations
observed between species and the metabolites to which they in fact did not contrib-
ute—represent the outcome of interactions at the species level, regardless of the
identity of the metabolite in question. This impact of strong interactions between data
set features on association test results has been described extensively for other data
types (40, 41). Indeed, examining the 141 false positives identified above, we found that
many can be explained by the relationships among the three dominant species in this
community: E. rectale, B. thetaiotaomicron, and B. ovatus. These species competed
strongly for carbon sources (and utilized their maximum allocation of sucrose, glucose,
and fructose at nearly every step of the simulation), and their abundances were
therefore negatively correlated. As a result, metabolites whose concentrations varied
due to the activity of one of these species were also frequently correlated with the
results seen with the other two. In total, 32 false-positive correlations paired one of
these species with a metabolite for which another species in this trio was a key
contributor. More generally, we found that the probability of a false-positive correlation
for a particular species and metabolite depended on the species’ correlation with the
true key contributors for that metabolite (P � 0.006, Spearman rho between share of
false positives and interspecies correlation; Fig. 4A). Moreover, the maximum correla-
tion that each species showed with any other species is a strong predictor of its overall
specificity, which ranges widely from 33.3% for E. rectale to 92% for D. piger (Spearman
rho � �0.84, P � 0.002). Species identity was also similarly predictive of whether a
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significantly correlated metabolite-species pair represented a true contributor versus a
false positive (Text S1).

In the case of key contributors, we found that false-negative correlations can be
explained largely by metabolite identity (LRT for metabolite terms, P � 0.002, although
the species involved was also somewhat informative with LRT P � 0.08). Put differently,
a lack of correlation between the abundance of a key contributor species and the
concentration of the metabolite to which it contributed was determined mainly by the
nature of the metabolite in question. This lack of correlation between a given metab-
olite and its contributors could have resulted from competition or exchange of a
metabolite between multiple species, such that none of the involved species end up
strongly associated with the final outcome on their own. Indeed, across all metabolites,
the average correlation between a metabolite and its key contributors was found to be
negatively associated with its number of key contributors (Spearman rho � �0.45,
P � 0.0008). The number of key contributors for any metabolite was also thus nega-
tively associated with the sensitivity of contributor detection for that metabolite
(Spearman rho � �0.48, P � 0.0004; Fig. 4B). We further hypothesized that false-
negative outcomes might be more common for metabolites with more or larger
negative species contributions, since these, by definition, mask or compensate for the
activity of key contributor species. While all metabolites with a false-negative outcome
did correspond to at least one species with a negative contribution value, as mentioned

FIG 4 Metabolite and species properties explain correlation-contribution discrepancies. (A) Strongly correlated species pairs produced greater numbers of
false-positive metabolite correlations. In the plot, the color of each tile indicates the strength of correlation in the abundances of each pair of species. The size
of the outer black circle in each cell represents the number of metabolites for which the species indicated on the x axis is a key contributor and the species
indicated on the y axis is not. The size of the inner circle represents the share of those metabolites for which a false positive was observed for the species on
the y axis. It can be seen that many false-positive correlations involve the taxa with the strongest interspecies associations: E. rectale, B. ovatus, and B.
thetaiotaomicron. (B) Metabolites with more microbial key contributors were more prone to false-negative correlations. Each column represents an analyzed
metabolite, ordered by its number of key microbial contributors, which are represented by each tile. The tiles are coded by the correlation outcome for each
contributor. (C) Correlations detected key contributors equally accurately regardless of whether a metabolite is secreted, utilized, or cross-fed by the species.
Each point represents the accuracy of correlations for a single metabolite across its comparisons with all 10 species.
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above, this was true for nearly all analyzed metabolites (50/52), and the number of
negative contributing species was not associated with the occurrence of a false-
negative correlation (P � 0.86, Wilcoxon rank sum test). Moreover, we also did not
observe any effect of the average concentration of a metabolite on the sensitivity and
accuracy of its detection via correlation analysis or of whether it was secreted, utilized,
or cross-fed (Fig. 4C). In summary, our analysis suggests that the most informative
factor in determining whether a metabolite’s key contributor can be detected by a
correlation analysis is simply whether there are other community members (key
contributors) that also impact the observed concentration of that metabolite.

Environmental fluctuations in metabolite concentrations impact detection of
key contributors. Our analyses described above all focused on a single simulated data
set in which the nutrient inflow was constant across all samples, meaning that metab-
olite variation was fully governed by microbial activity. However, in reality, metabolite
variation can and does arise also from nonmicrobial sources, potentially affecting both
the landscape of key microbial contributors and our ability to detect them via
correlation-based analyses. To explore the impact of environmental fluctuations, we
therefore ran several sets of additional simulations with various degrees of nutrient
fluctuation, designed to emulate a range of levels of stochastic variability in nutrient
availability across the simulated mouse gut communities, which could arise naturally
due to, for example, lot-to-lot variability in mouse chow and/or small variations in
intestinal physiology between mice. In these simulations, we maintained the same set
of 61 initial species compositions but introduced small random adjustments to the
nutrient inflow, sampling inflow concentrations for each compound in each simulation
from a normal distribution with a mean equal to the compound’s original inflow rate
and a standard deviation ranging from 0.5% to 10% of the mean in 8 increments (see
Materials and Methods). For each of the resulting 8 data sets, we again calculated
contribution values (with the added element of the nutrient inflow as a potential
contributor to variance), identified key contributors, and compared them with the
results of a correlation analysis.

Examining the obtained contribution values, we found, as expected, that variation
in inflow quantities can outweigh the variation in microbial fluxes and that as the
variation in inflow increased, its contribution to metabolite variation increased at the
expense of the contributions of community members (Fig. 5A). As a result, the number
of key contributions attributed to each species decreased for metabolites in the
nutrient inflow (Fig. 5B). Interestingly, however, some species lost their contributions
more gradually than others and in some cases even became key contributors for
additional metabolites. For most metabolites, the top microbial contributor did not
change with increasing fluctuations (Text S1).

We next examined how correlation-based detection of key microbial contributors
was affected by these inflow fluctuations. We assigned each of the 52 metabolites in
each of the 9 data sets (the original data set with no inflow fluctuations and the 8 data
sets with various degrees of fluctuations) to bins according to the level of contribution
attributed to the inflow for this metabolite at that degree of fluctuation (see Materials
and Methods). We then evaluated the performance of correlation analysis for each bin
separately. The share of true key contributors naturally decreased rapidly with increas-
ing environmental contribution, as did the number of significantly correlated species-
metabolite pairs (Fig. 5C). Importantly, however, the sensitivity of correlations de-
creased substantially with the level of contribution attributed to the inflow, but the
specificity in fact increased from 67.7% to 92.3% (Fig. 5D). This suggests that while
environmental fluctuations disrupted the signal linking microbial species with the
metabolites that they impacted, they also disrupted indirect associations between
species and metabolites (false positives). Overall, however, the AUC did not change
significantly with increasing environmental contribution (Fig. S8A), and the positive
predictive value was similarly relatively stable (and was never higher than 37%).
Interestingly, the detection of some metabolites not present in the inflow was also
affected by inflow fluctuations in a similar manner (Text S1) (Fig. S8B).
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Correlation analysis is similarly limited in accuracy in simulations of the more
complex and diverse human gut microbiota. Our results have illustrated consistent
discrepancies between microbe-metabolite correlations and microbial contributions to
metabolite variation in model 10-species communities. However, it is unclear to what
extent these discrepancies were influenced by the simple species compositions and
structure variance of the previous data set. Here, we therefore examined whether these
findings generalize to the more complex mammalian gut communities, which often
include many times more taxa and a more uneven distribution across individuals. To do
so, we ran an additional set of simulations emulating human gut microbiota trans-
planted into gnotobiotic mice. We first mapped 16S rRNA sequence variants from the
Human Microbiome Project (HMP) (61) to the genomes of the AGORA model collection
at 97% sequence identity (48) and selected the 57 samples for which greater than 25%
of the total abundance of sequence variants were mapped to an AGORA model. The
total share of mapped reads averaged 36.7% across these samples, with a maximum of
73.5%. Despite the variations in mapping rates, the obtained species distribution of the
mapped reads displayed properties typical of Western gut microbiomes, including a
predominance of Bacteroidetes and Firmicutes phyla along with various lower abun-
dances of Actinobacteria and Proteobacteria (Fig. 6A). The number of species identified
in each sample ranged from 23 to 62, with a median of 42. We ran simulations based
on each sample by setting the initial species relative abundances according to the
relative abundances of mapped reads while maintaining the same physical parameters
as those used in the previous simulations (see Materials and Methods for additional
details). We used nutrient inflow quantities with 1% standard deviation between
samples. Initial species compositions shifted in abundance in consistent ways over the

FIG 5 Environmental fluctuations impact correlation-contributor sensitivity and specificity. (A) Example set of contribution profiles for a single inflow
metabolite, L-valine, with increasing fluctuations in its inflow. The relative contribution values for each species and for the inflow are shown for 4 sets of
simulation runs, each with a different degree of fluctuation. The label on each plot indicates the relative standard deviation (coefficient of variation) of inflow
metabolite concentrations for that set of simulations. The microbial contributions to variance in L-valine concentrations became relatively smaller with
increasing variation from the external environment. (B) Shifts in key microbial contributors with increasing environmental inflow fluctuations. The number of
key contributions of each species (represented by the same colors as in panel A) to the 52 analyzed metabolites is shown separately for metabolites present
in and absent from the nutrient inflow. Levels of microbial contributors to inflow metabolites decreased as environmental contributions increased, but this
effect differed between taxa. (C) Correlation analysis failed to detect key microbial contributors regardless of the size of contribution from external inflow
variation. Across all sets of simulations, metabolites were binned based on the percentage of total positive contribution from the external inflow. The bar plots
shown have the same format as that presented in Fig. 3A, showing the number of species-metabolite pairs that were significantly correlated (left bar) or not
significantly correlated (right bar) and its correspondence with true species-metabolite key contributors (indicated by shade of gray). The first two bars (labeled
“Orig”) represent the original set of simulations (replicating Fig. 3A). The next two represent results from metabolites not present in the inflow across all levels
of inflow fluctuations. The remaining bars represent results from metabolites with increasing levels of environmental contribution. (D) Correlation analysis
detected key microbial contributors with increased specificity, decreased sensitivity, and generally consistent positive predictive value with increasing
contribution from the external inflow. Sensitivity, specificity, and positive predictive values are shown for same environmental contribution bins as those
described for panel C.
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FIG 6 Correlation-contribution discrepancies persist in simulations of complex human gut-based microbiota. (A) Species abundances of the 57 Human
Microbiome Project (HMP)-based simulations at the 144-h time point. Species are indicated as follows: phylum Firmicutes, shades of blue; Bacteroidetes, red;
Proteobacteria, green; Actinobacteria, purple. (B) Key contributions to metabolite variation across the HMP-based data set, summarized at the level of taxonomic
orders and metabolite categories. (C) Performance of correlation analysis for identifying key species-metabolite contributors in the HMP-based data set (solid
lines) compared with the original 10-species data set (dashed lines) across various significance levels, using Benjamini-Hochberg false-discovery-rate
(FDR)-corrected P values.
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simulation time course, as they tended to become dominated by a limited number of
fast-growing species (Fig. S9A). The obtained metabolite profiles were highly variable,
with a median coefficient of variation of 71% across 222 metabolites (Fig. S9B). As
described above, we calculated contribution values for this data set, identifying true
species-metabolite contributions. Overall, in this data set, a smaller share of the
possible species-metabolite pairs were identified as true contributors (392 of 29,082
possible pairs), and only 35.1% of the species (46 of 131) were identified as key
contributors to any metabolite. The genera with the most contributions were Bacte-
roides, Ruminococcus, and Enterobacter, which also represented three of the four most
abundant genera in the final data set (Fig. 6B).

We again performed a species-metabolite pairwise Spearman correlation analysis
and compared the results with the set of true contributors (full data and results are
shown for several example species-metabolite pairs in Fig. S9C to F). Since a smaller
share of species-metabolite pairs were significantly correlated in this noisier data set,
and in order to fairly perform comparisons with the previous data set while accounting
for the larger number of hypothesis tests, we defined correlation significance based on
an equivalent Benjamini-Hochberg estimated false-discovery rate (0.027) as the P value
cutoff of �0.01 used for the previous data set. Among the species-metabolite pairs,
2.2% displayed significant correlations at this cutoff (P � 0.0006). This level of correla-
tion is comparable to that seen in a recent microbiome-metabolome study of the colon
of healthy humans (51), in which 1.4% of operational taxonomic unit (OTU)-metabolite
pairs displayed Spearman correlation coefficients of the same effect size. In our data set,
correlation analysis detected contributors with high specificity (98.4%) and an area
under the ROC curve of 0.89, mostly owing to the very high number of species-
metabolite pairs that did not represent true contributions. However, the positive
predictive value was still only 29.0% at this cutoff, rising to as high as 57% when using
a stricter P value cutoff of �10�10. We compared these classification results with those
determined for the original data set, finding that despite the difference in overall AUC,
the sensitivity and predictive values in this more diverse data set were similar to or
worse than those observed in the 10-species data set at commonly used FDR thresholds
between 0.1 and 0.01 (Fig. 6C). Moreover, as in the 10-species data set, a large share of
false-positive species-metabolite pairs (65.4%, 291 of 445) also involved species with no
capacity to impact the metabolite in question.

Examining factors that underlie discrepancies between correlation-based analysis
and true contribution values, we found that the outcomes of correlation analysis were
influenced by the same factors as those observed in the model community data set, as
well as by several additional characteristics. False-positive classifications were, again,
driven by interspecies covariance. Species significantly correlated (at 10% FDR) with a
true key contributor for a metabolite were 13.6 times more likely to have a false-positive
correlation with that metabolite than species with no such link (P � 10�16). Notably, the
false-positive rate determined for a given species was also substantially affected by its
prevalence; the number of samples in which a species was present was negatively
associated with its specificity (Spearman rho � �0.57, P � 0.002, Fig. S9G), among
species with at least 3 key contributions. In other words, widely prevalent species were
more prone to false-positive correlations than rarer species. False-negative contribu-
tions were again influenced by properties of both metabolites and species. As seen with
the 10-species data set, species contributions to metabolites with two or more key
contributors were 5.2 times more likely to not be correlated than those that repre-
sented the sole key contribution for a metabolite (P � 10�10, Fisher’s exact test). In this
data set, an elevated share of those metabolites with multiple key contributors was
cross-fed between different species (P � 0.00007, Fisher’s exact test) and, correspond-
ingly, key contributors for cross-fed metabolites were also 1.6 times less likely to be
significantly correlated (P � 0.02). Importantly, both cross-feeding and false-negative
outcomes were found to occur variably across metabolite classes, with nucleotide
metabolites having the highest rates of both phenomena (Fig. S9H). Taken together,
our simulations and analyses of this more realistic microbiota simulation demonstrate

Microbial Contributions to Metabolite Variation

November/December 2019 Volume 4 Issue 6 e00579-19 msystems.asm.org 17

 on D
ecem

ber 18, 2019 at 74762133
http://m

system
s.asm

.org/
D

ow
nloaded from

 

https://msystems.asm.org
http://msystems.asm.org/


that correlation analysis can have a somewhat greater utility in a microbial community
data set with greater complexity and variability, but that the results still display a high
false-discovery rate and are strongly influenced by properties of individual metabolites
and species.

DISCUSSION
Insights and implications for microbiome-metabolome analyses. As described

above, we investigated the ability of correlation-based analyses to detect key microbial
contributors responsible for variation in metabolite concentrations across samples in
simulated data sets. Our findings suggest that microbe-metabolite correlation analysis
may be a useful approach for exploratory analyses but that such analyses have caveats
and can be impacted by several factors. Below, we elaborate on a set of practical
conclusions and their implications for the analysis and interpretation of microbiome-
metabolome studies. Note, though, that the precise correlation performance statistics
observed in our simulated data sets may not fully generalize to diverse real-world
microbiome-metabolome data sets; nevertheless, the principles illustrated by these
data sets are important to consider in interpreting microbiome-metabolome results.

Association-based analyses of microbiome-metabolome assays can have
low predictive value for detecting direct species-metabolite relationships.
Microbiome-metabolome association studies have been previously proposed to repre-
sent a powerful tool for the identification of causal mechanisms of microbiome
metabolism (53), and, indeed, such studies often present detected associations as
evidence for mechanistic relationships (11, 33, 35–37). However, our analysis suggested
that the positive predictive value of significant species-metabolite correlations for
identifying true microbial contributors can be extremely low: less than 50% across all
settings, as low as 10% in the context of large environmental fluctuations, and 29% in
simulations based directly on human gut composition. Although we have not evalu-
ated many variables and data set characteristics that could influence these statistics,
these findings are also supported by those of recent experimental studies pairing
microbiome-metabolite correlation analysis with in vitro monoculture validations, and
those studies have similarly anecdotally described many false-positive correlations (36,
39). Additionally, the somewhat low sensitivity observed in our analyses suggests that
a lack of association is not necessarily sufficient to justify rejection of a hypothesis
suggesting that a particular microbial taxon impacts a particular metabolite. The choice
of correlation threshold should therefore be made carefully, taking into account the
complexity of the community and the environmental context. In general, identified
correlations between microbial taxa and metabolites should be interpreted very con-
servatively and used mostly to prioritize microbe-metabolite relationships for follow-up
validation studies (e.g., via culture-based studies or germfree model organism coloni-
zation). This approach has already been applied successfully in some cases (39).
Another potential strategy for improving the predictive value of such correlation-based
analyses is to examine whether they replicate across multiple conditions (e.g., discovery
and validation cohorts [36]). Indeed, we found that a correlation analysis may provide
stronger evidence for a contributor relationship if it persists across different contexts or
data subsets. This was true across subsets of the original 10-species data set, as well as
across our 9 10-species simulated data sets with various environmental fluctuations. In
that comparison, the 43 species-metabolite pairs that were consistently significantly
correlated in every data set were 2.1 times more likely to denote true key contributor
relationships than other significant correlations (Fisher’s exact test, P � 0.05), although
the positive predictive value was still relatively low (39.5%). However, of the limited
number of significant correlations shared between our original 10-species and HMP-
based data sets (n � 5), all were false positives in both data sets, again suggesting the
need for caution.

The predictive power of correlation-based analysis is species, metabolite, and
context dependent. In our data sets, metabolites varied widely in both their contri-
bution profiles and their detectability via correlation analysis. In particular, the key
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contributors for metabolites acted upon by fewer species and, potentially, those that
are not exchanged between different species were identified more readily. Moreover,
in our simulations of human gut communities, contributions by the less prevalent
species were identified much more accurately than those by widely found species,
indicating that hypotheses based on associations of rarer species should potentially be
prioritized. Correlation analysis may thus identify microbes involved in specialized
secondary metabolic processes (e.g., products of complex biosynthetic pathways)
performed by rare taxa more readily than those involved in the more widespread
processes. Similarly, we found that the species-metabolite correlations for species that
are strongly associated with other taxa (e.g., those with tight interactions with other
community members) are often spurious, suggesting that such correlations should be
regarded less confidently.

External metabolic fluctuations can strongly impact the detection of microbial
contributions. Our analysis of the impact of environmental fluctuations suggested that
the presence of environmental variability corresponding to a diverse set of samples
could in fact increase correlation specificity. We also found that the sensitivity of
correlation analysis rapidly decreased (from 60% to 9%) with increasing environmental
fluctuations. These observations suggest that while a tightly controlled environment
(e.g., identical diets) is intuitively expected to increase the strength of microbiome-
metabolome studies, its value depends on the study priorities. Specifically, if the goal
is to identify clear-cut microbial drivers of health- and disease-associated metabolite
shifts, stochastic variation in nutrient availability could be beneficial as it may reduce
the rate of false-positive associations. In contrast, for studies searching for a particular
microbial taxon’s involvement in a particular process (e.g., aiming to determine
whether an ingested probiotic impacts aspects of gut metabolism), a more controlled
environment may be favorable. It should, however, be noted that our findings were
based on environmental fluctuations that were stochastic, uniform, and independent,
conditions which may not hold for many real-life sources of environmental variation
such as diet or host circadian rhythms. It is also worth noting that in our simulations,
microbial fluxes for some environmental metabolites could be drowned out by as little
as 0.5% variation in nutrient inflow quantities, while others still had substantial micro-
bial contributions even with a 10% variation in inflow. In interpreting an observed
association, the scale of possible microbial variation relative to external variation should
therefore be taken into account.

Mechanistic reference information can improve the predictive power of
microbiome-metabolome studies. In our simulated data set, 36% of the false-positive
correlations occurred between a metabolite and a species that was in fact not capable
of taking up or secreting that metabolite. Ruling out such falsely detected links would
substantially improve the positive predictive value of a correlation-based analysis. One
approach for doing so is that of utilizing genomic information, which can be obtained
or predicted for many microbial taxa (62). By coupling such genomic information with
metabolic databases such as KEGG (Kyoto Encyclopedia of Genes and Genomes) or
MetaCyc (63, 64), researchers can filter out correlation-based links that likely do not
represent feasible causative relationships. Further improvement can be obtained by
integrating such reference information directly into the analysis. Indeed, we previously
introduced a computational framework, termed MIMOSA (model-based integration
of metabolite observations and species abundances) (65), that utilizes a simple
community-wide metabolic model to assess whether measured metabolite variation is
consistent with shifts in community metabolic potential and to identify potential
contributing taxa. MIMOSA has been applied to various host-associated microbiomes
from various body sites and from human and mouse hosts (12, 66–68). Applying
MIMOSA to the simulated species-metabolite data set analyzed above (see Materials
and Methods), we found that it indeed identified key contributors significantly more
accurately than a correlation-based analysis, with an AUC of 0.89 (Fig. 7). Notably, in this
analysis, we assumed MIMOSA had access to the correct set of metabolic reactions
possessed by each species. Using standard less-complete information obtained directly

Microbial Contributions to Metabolite Variation

November/December 2019 Volume 4 Issue 6 e00579-19 msystems.asm.org 19

 on D
ecem

ber 18, 2019 at 74762133
http://m

system
s.asm

.org/
D

ow
nloaded from

 

https://msystems.asm.org
http://msystems.asm.org/


from the KEGG database (as done regularly when using this tool) reduced the number
of metabolites that could be analyzed from 52 to 39, with improved specificity (96%)
and positive predictive value (61%) and an ultimately comparable AUC (0.74). Com-
bined, these findings suggest that reference model-based approaches can provide
stronger evidence for mechanistic relationships than strictly correlation-based methods
but that their use depends on complete and high-quality metabolic reference data-
bases.

Future opportunities and challenges. Microbiome-metabolome studies have an
important role in microbial ecology research. They specifically have great potential to
dissect the metabolic interactions of complex microbial communities and to unify “top
down” and “bottom up” microbiome research approaches by providing mechanistic
information at a systems level. Moreover, from a translational perspective, microbiome-
metabolome studies can inform efforts to design targeted therapies to alter specific
microbial or metabolic features of a community (13). Such interventions require first
identifying putative targets, which in many cases may entail identifying the key
contributor species that drive observed shifts in a particular beneficial or detrimental
metabolic phenotype.

Importantly, while we show here that a correlation-based analysis may be limited in
its ability to identify these key microbe-metabolite links, this does not necessarily imply
an inherent limitation of microbiome-metabolome data. For example, analyzing our
HMP-based data set, we found that species abundance is in fact a very good proxy for
metabolic activity (median Pearson correlation of 0.996 between abundance and flux
for all species-metabolite pairs), meaning that the variance in total species abundance
drastically outweighed the individual-level variance in flux rates. Further examining
whether the false-negative associations in our original data set stemmed from a
disconnect between the abundance of a species and its metabolite uptake or secretion
rates, we identified only 2 undetected key contributor pairs that could be explained by
such a discrepancy. This analysis suggests that taxonomic-abundance data can be
sufficient to explain and model community metabolic variation to a great extent,
despite common concerns about potential discrepancies between community compo-
sition and function. It also suggests that metatranscriptomic expression data may not
provide much additional value for this purpose, as other studies have indicated
previously (62, 69, 70).

Given the increasing prevalence of microbiome-metabolome studies, their
promise, and the caveats concerning association-based research discussed above,
further development of computational and statistical methods for analyzing such

FIG 7 MIMOSA identified key microbial contributors more accurately than correlation analysis. (A)
Number of species-metabolite pairs that were identified as potential contributors (left bar) or not (right
bar) by MIMOSA and its correspondence with true key contributors. (B) Receiver operating characteristic
(ROC) plot, showing the ability of both MIMOSA and absolute Spearman correlation values to classify key
contributors among all species-metabolite pairs.

Noecker et al.

November/December 2019 Volume 4 Issue 6 e00579-19 msystems.asm.org 20

 on D
ecem

ber 18, 2019 at 74762133
http://m

system
s.asm

.org/
D

ow
nloaded from

 

https://msystems.asm.org
http://msystems.asm.org/


data sets is clearly needed. Possible directions include the use of multispecies
dynamic metabolic models that can replicate experimental observations (71), mul-
tivariate approaches for deconvolving interactions between species and the envi-
ronment (72, 73), and probabilistic methods that can integrate prior information
while accommodating other unknown mechanisms (38, 74). The analytical frame-
work for calculating taxon-metabolite contributions and the use of dynamic simu-
lations demonstrated here can inform both the future development and the
evaluation of such methods.

There is a continuing need for gold standards and evaluation of methods in
microbiome-metabolome analysis, as this report represents only a first step. We focused
specifically on one type of research issue: identification of microbial taxa directly
responsible for variation in metabolite concentrations between samples in a cross-
sectional study design. Although this focus describes many recent microbiome-
metabolome studies, other studies may address a wide range of complementary
research issues and, correspondingly, the desired “ground truth” can take different
forms. Depending on the objective, an alternative definition of a taxon-metabolite
relationship may be required. For example, it may be valuable to identify key contrib-
utors that act via alternative mechanisms, such as by modifying substrate availability or
environmental conditions, or to distinguish metabolite variation arising in response to
a perturbation from variation due to differences in steady-state metabolism between
communities. Additionally, we have not evaluated the ability of microbe-metabolite
correlation studies to detect the effects of environmental metabolites (including, e.g.,
antibiotics) on specific microbial community members.

It is also worth noting several important limitations of our study framework. First and
foremost, our findings rely purely on an in silico system that may not capture many
aspects of community ecology and metabolism. For example, it is possible that the
predictive value of correlation analysis, as well as of other analytical methods, in this
system differs substantially from that in true biological systems. Our rationale for using
an in silico framework is discussed above, but we hope that future evaluation analyses
will take advantage of ongoing technology developments in mass spectrometry and
stable isotope probing to define key microbial contributors based on experimental,
quantitative, species-specific community flux data (75–77). Such evaluations can also
make use of data sets comparing community microbiome-metabolome data with in
vitro monoculture or monocolonization data (39, 43, 44). Our study also considered only
a small number of data sets whose specific configurations might not be representative
of the levels of variation that occur in typical microbiome studies. In particular, the
10-species data set describes a simple set of communities with high between-sample
similarity and distinctive compositional structure, which can affect the observed rela-
tionships between correlation and contribution values. Observing such a variance
structure in an experimental data set may reflect the effect of some key experimental
variables (such as sampling site or pH) and may prompt researchers to avoid using
correlation analysis altogether or to avoid considering such variables as confounding
factors when calculating microbe-metabolite correlations (see, for example, reference
36). Indeed, an important future direction would be to evaluate microbiome-
metabolome analysis methods in collections of microbiomes spanning healthy and
disease states or that are influenced by other confounding environmental variables.
Many other relevant community and data set properties could also affect the outcomes
of microbiome-metabolome analysis, including community diversity and stability, sam-
ple size, and measurement error. Another important consideration that could affect our
findings is sampling time. Indeed, in our study, we ran simulations for a long and yet
limited duration, which might have resulted in compositions that differed from those
present in real systems in a steady state. Microbiome-metabolome studies should
similarly consider whether communities of interest had undergone a recent transition
or perturbation versus an being maintained in an extended steady state prior to
sampling.
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Ultimately, much remains to be learned about the many processes through which
complex microbial communities shape their environment. The first major call for the
application of metabolomics to microbiome research, published 10 years ago (78),
noted that new methods will be necessary to integrate genomic and metabolic data
and to inform the prediction of community metabolic properties from metagenomes.
Now that microbiome-metabolome data sets are widely available, ongoing develop-
ment of analysis methods for these studies has great potential to generate new
knowledge. Moreover, future work in this area stands to benefit from the utility of
dynamic and multiscale metabolic modeling. Detailed mechanistic simulations are used
widely in astronomy, climate science, and other fields to make methodological choices
and assess possible experimental outcomes under conditions in which ground truth
measurements are unavailable or difficult to obtain (79, 80). An analogous strategy may
be similarly fruitful in microbiome research.

MATERIALS AND METHODS
Derivation of species contributors to variation. We derived an expression representing the

contribution of each species to the variance in the concentration of each metabolite. While we
describe this calculation in terms of species, a similar calculation could be done at the level of phyla,
strains, or any grouping of the community for which metabolite secretion and uptake fluxes are
available.

The concentration of a given metabolite M at the end of a single simulation run is a function of the
uptake and secretion fluxes (responding to the species’ degradation and synthesis activities) of the n
species, the environmental inflow over all time steps min, and the dilution mout of the chemostat over all
time steps as follows:

M ��
i�1

n

mi � min � mout

The value of mout at a given time step t is the product of the dilution rate D and the metabolite
concentration at the previous time point (see above). This fact can be used to express mout in terms of
all the previously recorded environmental inflow and microbial activities. The metabolite concentration
at any time point t, M(t), is calculated by the following equation:

M(t) ��
k�1

t�1 �(1 � D)t�k�1�
i�1

n

mik�� min�
k�1

t�1

(1 � D)k

where mik represents the activity of species i at a single time point k. We can then ignore dilution outflow
by replacing each activity value mi in the final concentration calculation shown above with a value
corrected for the mitigating effect of chemostat dilution over the course of the simulation up to time t,
defined here as mi*. mi* represents the total amount of a compound secreted or imported by species i
minus the share of that quantity that is eventually diluted out over the course of the simulation as
follows:

mi
* ��

k�1

t�1

(1 � D)t�k�1mik

and thus,

M � min ��
i�1

n

mi
*

In this work, we refer to “environmental fluctuations” as the effect of the independently parameter-
ized nutrient inflow, min, and where not otherwise specified we use mi to imply mi*, a species activity
quantity that accounts for the corresponding subsequent dilution out of the system.

Using the expression shown above, var(M) can then be clearly expressed as a sum of correlated
environmental and microbial random variables as follows:

var�M� ��
i�1

n �
j�1

n

cov�mi, mj� ��
i�1

n

cov�mi, menv�

��
j�1

n

var�mj� � var�menv� � 2�
i�1

n �
j�i�1

n

cov(mi, mj) � 2�
i�1

n

cov�mi, menv�
This expression can then be partitioned additively into n � 1 terms representing the contribution of

each microbial species and of fluctuations in the environmental nutrient inflow as follows:

ci ��
j�1

n

cov(mi, mj) � cov(mi, menv) � var�mi� ��
j�i

cov�mi, mj� � cov(mi, menv)

Each contribution value ci is also equivalent to the covariance of the activity mi with the total of
metabolite concentrations M. This equivalence can be seen using the definition of covariance and
rearranging the terms above (here assuming no environmental contribution for clarity) as follows:
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ci ��
j�1

n

cov�mi, mj�

��
j�1

n

E��mi � E�mi�	�mj � E�mj�	


� E�mi � E�mi�	�
j�1

n

E�mj � E�mj�	
� E�mi � E�mi�	*E�M � E�M�	
� cov(mi, M)

Multispecies dynamic flux balance analysis modeling. In this study, we simulated the growth and
metabolism of a community of 10 representative gut species that was previously explored experimen-
tally (57). We specifically utilized a previously introduced multiscale framework for modeling the
dynamics and metabolism of multiple microbial species in a well-mixed shared nutrient environment (51,
52). This framework assumes that the aim of each species in the community is to maximize its own
growth on a short time scale given available nutrients and uses flux balance analysis to predict the
growth and metabolic activity of each species on this small time scale (56). The shared environment is
then iteratively updated based on the species’ predicted growth, uptake, and secretion rates, such that
metabolic interactions are mediated via the environment as a natural by-product of species activities
rather than being explicitly modeled (81).

We used genome-scale metabolic model reconstructions of the 10 community members from
AGORA collection version 1.01 (48), which have been consistently curated to remove or modify
thermodynamically unfavorable reactions, remove futile cycles, and confirm growth in anaerobic envi-
ronments on expected carbon sources, with additional curation for several biosynthesis pathways.
COBRA (constraint-based reconstruction and analysis) toolbox version 2.0 was used to convert each
AGORA model to MATLAB format (82). The growth and metabolism of the 10-species community were
simulated in a chemostat setting in 15-min time intervals. We set the chemostat volume to be
approximately equal to that of a mouse gut (0.00134 liter [83]). We similarly set metabolite inflows to
emulate the macronutrient and micronutrient quantities in a corn-based mouse chow (57).

The simulations were performed following a previously introduced procedure (52) and were repeated
for each time step tn as follows. First, the maximum rates of uptake for all metabolites by all species,
denoted as vjk for metabolite j and species k, were calculated based on Michaelis-Menten single-substrate
kinetics, with assumed universal values for maximum rate Vmax and transporter affinity Km for all
metabolites. vjk was further constrained based on an allocation of the metabolite’s environmental
concentration to each species in proportion to its biomass. Then, the steady-state reaction fluxes were
determined for each species k at time point tn by maximizing the growth rate �k, within the obtained
constraints on environmental metabolite uptake. To obtain a single and consistent flux solution for each
species, the total flux activity for each species (i.e., the sum of absolute fluxes given the predicted optimal
growth rate) was minimized, under the assumption that organisms prefer to operate their metabolism
with minimal enzymatic cost (84). The optimal flux solutions were solved using linear programming with
GLPK (GNU linear programming kit, www.gnu.org/software/glpk). With the resulting flux and growth rate
information, the total biomass of each species k, biok(tn), was updated for the next time point tn�1, using
a standard exponential growth function incorporating dilution as follows:

biok(tn�1) � biok(tn)e�k�t � biok(tn)D�t

where D is the dilution rate. We set D to 0.0472 per h in order to obtain community growth rates
consistent with the observed average growth rate of the three most abundant species growing under 47
different sets of carbon conditions (85). The total amount of uptake or secretion for each species k and
metabolite j over a single time step was then calculated as previously derived (52) as follows:

mFBA
jk (tn) �

vjk
k * biok(tn)(ek�t� 1)

where vjk is the rate of uptake or secretion specified by the FBA solution for that species and metabolite
at that time point, �k is the species growth rate, biok(tn) is the species abundance, and Δt is the size of
the time step. Finally, combining the flux solutions of all species, nutrient inflow, and dilution, along with
the steady-state assumption of no intracellular metabolite accumulation, the concentration of a given
metabolite in the shared nutrient environment at the next time point, Mj(tn�1) can be updated as follows:

Mj�tn�1� � Mj�tn� � mFBA
j �tn� � min

j �t � Mj�tn�D�t

where mFBA
j �tn� is the metabolic impact from all species (considering their abundance and the uptake and

secretion rates of metabolite j) and min
j is the inflow rate of metabolite j. This process of calculating

uptake rates, flux balance analysis solutions, and updated metabolite concentrations was then repeated
iteratively for the duration of the simulation.

Each simulation was run for a period of 144 h or 576 time steps (with the exception of the analyses
of various simulation durations presented in Fig. S7A to E in the supplemental material). This time period
was long enough for most simulation runs to begin to approach a steady-state composition without fully
converging. Specifically, in �65% of the simulations analyzed in our study, the change in abundance in
any species over the final 3 h was less than 0.01% of the carrying capacity (see below), and none had
changes greater than 0.3% of the capacity over that period. The concentrations of species and
metabolites, the species growth rates, and the solved rates of all reactions for each species (including
uptake and secretion) were recorded for each step of each simulation and used for subsequent analyses.
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Simulation initialization parameters. For the 10-species data sets, we fixed the initial total
abundances of microbes to the carrying capacity for the given system and medium, which was estimated
to be 0.433 units of biomass. This capacity was calculated as the average final total abundance from a
set of simulations with various compositions and low initial abundances. We then adjusted the relative
abundances, increasing the abundance of one species at a time at the expense of all other species
equally. Specifically, for each species, we ran simulations in which the ratios of that species’ initial
abundance to all other species were 2, 3, 4.5, 6, 9, and 13 (equating to a range in relative abundance of
10% to 60% for each species). This resulted in a total of 61 simulation runs (one with all species starting
at equal abundances and 6 with increased abundance of each species). We chose this sample size to
approximately represent the sample sizes of published cross-sectional microbiome-metabolome associ-
ation studies (17, 18). We set the initial inflow concentrations to the amount of dilution that would occur
over 1 h under the calculated inflow rates.

Calculation of contribution values for variable metabolites. We calculated contribution values for
all metabolites with a variance in concentration above the 25th percentile. We chose this threshold in
order to include as many metabolites as possible while excluding those that showed variation in only half
or fewer of the simulation runs or whose variation would be subject to numerical errors.

Comparison with Shapley values. We implemented an approximate Shapley value algorithm (50)
as an alternative strategy to calculate the contributions for the main 10-species simulated data set.
Briefly, 15,000 random orderings of the 10 species were randomly generated. For each ordering, the
variance in metabolite activity was calculated for subsets of size 1 to size 10, adding species according
to the specified ordering. The difference in variance as a given species was added to the subset, denoting
the marginal contribution of that species to variation, was recorded. The average marginal contribution
across all orderings for each species was then defined as its contribution to variance.

Species-metabolite correlation analysis. We calculated Spearman correlations between absolute
species abundances (quantified as total biomass) and concentrations of variable metabolites. We used
absolute abundances in order to evaluate the relationships between species and metabolites under the
hypothetically best possible measurements of both data types. We also compared correlation results
using relative abundances and found very minimal differences in the main 10-species simulation data set;
only 7 species-metabolite pairs (1.3%) were found to be significantly correlated using absolute abun-
dances but not relative abundances, and only 4 pairs (0.8%) were found to be correlated using relative
abundances but not absolute abundances.

We used a P value threshold of 0.01 to classify “significant” associations for binary comparisons. For
interpretability, we refer to P values not corrected for multiple-hypothesis testing, since the number of
tests remained constant across most analyses (520 possible species-metabolite pairs). The 0.01 threshold
that we use to define significantly correlated pairs is equivalent to a Benjamini-Hochberg corrected
false-discovery threshold of 0.027, calculated using the R function p.adjust (86). We used this false-
discovery threshold as the cutoff for the analysis of correlations within subgroups.

Logistic regression modeling of correlation outcomes. We used logistic regression models to
identify factors that can be used to predict whether a non-contributing species-metabolite pair displayed
a significant correlation (false positive) and whether a key contributor species-metabolite pair failed to
be correlated (false negative). We used the glm function in R to fit models of the log odds of whether
a non-contributing species was correlated with its corresponding metabolite (false positive or true
negative), using as predictors grouped indicator values for species and metabolite identities. We
separately fit another set of logistic regression models to predict whether a key contributor species is
correlated (true positive or false negative) using the same predictors. Models were compared using
likelihood ratio tests and the anova function in R.

Simulations with various inflow quantities. We ran 8 additional sets of simulations with the same
set of 61 different initial species compositions but with various degrees of inflow fluctuations. Specifically,
the nutrient inflow quantities were sampled independently from a normal distribution, with a mean of
the original inflow concentration and a standard deviation equal to a set percentage of the mean. The
8 levels of deviation were 0.5%, 1%, 2%, 3%, 4%, 5%, 8%, and 10%. In the comparison of correlation
results across samples, we evaluated the same set of 52 variable metabolites as were used for the original
data set for consistency, although, given the added stochasticity, additional metabolites met the same
variance cutoff as we used to define variable metabolites.

To evaluate correlation performance as a function of increasing environmental contribution, we
binned the 38 analyzed inflow metabolites across the 8 data sets on the basis of the size of the
environmental contribution to variance for the metabolite in that data set. In other words, metabolites
in any data set with an environmental contribution of greater than 0 but less than 10% of the total
positive variance contributions were binned into a single category, those with an environmental
contribution of between 10% and 20% were binned into the next category, and so on. We analyzed the
52 metabolites in the original constant-environment data set as a separate category and did the same
for the 14 metabolites not present in the inflow in each of the 8 environmentally differing data sets.

Confidence intervals for AUC values were calculated using the pROC package in R (87) and a
bootstrap method with 500 resamplings.

Simulations of Human Microbiome Project-based microbiota. To simulate the more complex gut
microbiota, we downloaded the 16S rRNA sequence variant abundance tables from the Human Micro-
biome Project (61), processed with deblur (88), from Qiita (89). We also downloaded rRNA sequences for
all of the 818 genomes corresponding to AGORA v1.0.2 models from NCBI RefSeq and GenBank using the
biomartr R package (90). We used vsearch version 2.8.1 (91) to map the HMP sequences to the AGORA
ribosomal sequences with 97% identity, with the max_rejects parameter set to 0 in order to obtain the
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highest identity match for each sequence variant. We chose to model a subset of 57 samples for which
at least 25% of their total read counts successfully mapped to an AGORA genome. We normalized species
abundances based on the 16S rRNA copy number of the corresponding genome and initialized 57
simulations with the starting relative abundances determined based on the AGORA-mapped relative
abundances of these samples. We updated the nutrient inflow to enable growth by most models as
follows. We assessed whether the addition of each individual metabolite to the original nutrient inflow
had a growth-promoting effect on any of the species, specifying quantities similar to those of the average
European diet in the Virtual Metabolic Human database where possible (92). Metabolites that promoted
growth in at least one species were retained in the revised nutrient inflow, and the process of testing for
increased growth with the addition of any single metabolite was repeated. After two rounds of addition
of metabolites to the inflow, 15 models, representing 3.4% of the total normalized abundance across all
samples, still displayed zero growth. We removed these from the simulations and used the final updated
nutrient inflow with the 131 remaining models. All other simulation parameters were the same as for the
10-species community simulations. In our analyses of the role of interspecies correlation in this data set,
we excluded species that appeared in fewer than 4 samples.

Application of MIMOSA to simulated data and comparison with correlation analysis. We applied
MIMOSA v1.0.2 (github.com/borenstein-lab/MIMOSA) (65) to the obtained set of metabolite and species
abundances for the main 10-species data set. To construct the community metabolic network model
required by MIMOSA, we merged the 10 species-level models used in the simulations into a single
stoichiometric matrix. If a reversible reaction ever proceeded in only a single direction in any simulation,
we encoded it as nonreversible. To apply the KEGG-based version of MIMOSA, we converted the model
metabolite identifiers (IDs) to KEGG IDs (63), downloaded KEGG Orthology gene annotations for the 10
modeled species from the IMG/M database (84), and ran a MIMOSA analysis using the KEGG metabolic
network model encoded in reaction_mapformula.lst (KEGG version downloaded February 2018).

Data availability. Code for all the analyses presented in this study is available online in the form of
R notebooks at https://github.com/borenstein-lab/microbiome-metabolome-evaluation. The code and
media files for performing dynamic FBA coculture simulations are available from http://borensteinlab
.com/download.html. Simulation data generated and analyzed in this study and displayed in the figures
are also available for download from http://borensteinlab.com/download.html.
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