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Abstract

In this paper we study a model of gene networks introduced by Andreas Wagner in the 1990s that has been used extensively
to study the evolution of mutational robustness. We investigate a range of model features and parameters and evaluate the
extent to which they influence the probability that a random gene network will produce a fixed point steady state expression
pattern. There are many different types of models used in the literature, (discrete/continuous, sparse/dense, small/large
network) and we attempt to put some order into this diversity, motivated by the fact that many properties are qualitatively the
same in all the models. Our main result is that random networks in all models give rise to cyclic behavior more often than fixed
points. And although periodic orbits seem to dominate network dynamics, they are usually considered unstable and not
allowed to survive in previous evolutionary studies. Defining stability as the probability of fixed points, we show that the
stability distribution of these networks is highly robust to changes in its parameters. We also find sparser networks to be more
stable, which may help to explain why they seem to be favored by evolution. We have unified several disconnected previous
studies of this class of models under the framework of stability, in a way that had not been systematically explored before.
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Editor: Matjaž Perc, University of Maribor, Slovenia

Received February 10, 2012; Accepted February 25, 2012; Published April 12, 2012

Copyright: � 2012 Pinho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The Ph.D. Program in Computational Biology is sponsored by Fundação Calouste Gulbenkian, Siemens SA, and Fundação para a Ciência e Tecnologia
(fellowship SFRH/BD/33531/2008). The research was also supported in part by National Institutes of Health grant GM28016 and National Science Foundation
award CNS-0619926. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The Ph.D. Program in Computational Biology is sponsored by, among others, Siemens SA. There are no competing interests or relationship
between the authors and this commercial funder, besides that. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: rpinho@stanford.edu

Introduction

Gene regulatory networks have been studied intensively in recent

years, both by physicists and biologists, who have provided different

insights into this important field [1,2]. We present numerical

simulations to investigate stability in large Random Threshold

Networks (RTNs) [3]. This spin glass or neural network-type model

[4] represents a subclass of Random Boolean Networks (RBNs) [5].

We consider all attractor types rather than only those networks that

have fixed points. Thus our framework is that used by physicists

[6,7] rather than that used by biologists [8,9].

Wagner [8,10] introduced a version of this gene network model

to study the evolution of genetic robustness. The gene network is

represented by a dynamical system whose state variables correspond

to expression levels of the network’s genes. A network is said to be

robust if it retains the same expression state after mutation. The

transient from an initial state to an attractor represents a

developmental process and the fixed point attractor represents the

phenotype. For this reason, fixed points have been traditionally

considered developmentally stable, and networks that have cycling

dynamics are not allowed to survive. This requirement of

developmental stability [9] can be viewed as viability selection [11].

Implementations of the model for evolutionary simulations have

varied in parameters such as network size, connectivity, normal-

ization function, and whether the components of both the state

vector and the matrix are discrete or continuous [8,9,11–22]. In

principle, all of these parameters may influence the dynamics of

the model and, consequently, the results of evolutionary

simulations. It is well known, for example, that prior to evolution,

smaller networks are more robust to mutations than larger ones,

and that this relationship reverses after selection [8]. Our goal is to

systematically explore how changes in all of these parameters

affect the probability of fixed points, in the hope of motivating

discussion of the relevance of this model for evolutionary analysis.

To this end,we focus our attention solely on the gene network

model itself, on what has been called developmental dynamics,

without evolution. We generate millions of random networks of

size up to N~10,000 and measure the probability of fixed point

dynamics for most of the different parameterizations reported in

the literature, and show that cycles always dominate network

dynamics. Fixed point steady states are the exception, not the rule

in this gene network model. We also show that stability, defined as

the probability of fixed point dynamics, decreases with network

size and density. Stability distributions are bimodal: some matrices

are always stable independently of the initial state, while others

never reach a fixed point. Other measurements like period-size

distributions show further deviation of the properties of this

network model from those of the general class of RBNs.

The layout of the paper is the following: we finish the

Introduction by presenting a more detailed version of the Model;

we next present our Results (more of which are detailed in Text S2

and Supporting Information Figures), followed by a Discussion; we

conclude with a short Methods section where we present a

summary of each model variant used to produce our Figures

(Table S1; more detailed methods can be found in Text S1).

Model
The model consists of an interaction network of N genes,

represented by an N|N matrix, W , whose elements, wij , denote
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the effect on gene i of the product of gene j. The matrix is

generally not symmetric and diagonal elements, wii, represent self-

regulation. The fraction c of nonzero entries in the W matrix is a

parameter of the model and reflects the density of the network.

The degree of a gene is represented by Ki and SKT~cN,0ƒcƒ1
is called network connectivity [23,24]. Each network is a

dynamical system, with state vector S(t)~ s1(t),:::, sN (t)ð Þ repre-

senting the expression levels of each gene at time t. The

deterministic, discrete-time dynamics of S(t) are modeled by the

set of nonlinear coupled difference equations

si(tz1)~f
XN

j~1

wijsj(t)

" #
, ð1Þ

where f is a normalization function that prevents the system from

diverging (Text S1). More specifically, f is a threshold function

(either step or sigmoid; Figure S13), representing cooperative

binding and saturation in gene expression. The network is updated

synchronously (see [25–27] for asynchronous updates). We define

Equation (1) as the development process (see [8,9] for an

illustration of the model, as well as a discussion of the biological

motivations and assumptions behind it). Since the state space of

the model is finite and the dynamics deterministic, the system will

eventually reach an attractor given an initial gene expression state.

The attractor can either be a fixed point or a limit cycle.

The simplicity of the model allows for evolutionary simulations,

where a standard population genetic model of mutation,

recombination and selection acts upon a population of gene

networks, and the network’s state is taken as its phenotype. Despite

their level of abstraction, Boolean networks have been highly

successful, both at reproducing experimental results in different

organisms [2,18,28,29], and allowing for theoretical predictions

about the evolution of network properties such as robustness,

evolvability, and many others [8,9,11,13–17,19–22,30–38].

The properties of this gene network model in the absence of

evolution or any kind of selection have attracted considerably less

attention in the genetic regulation literature [11,12,18,20,30,31].

On the other hand, the physics community has been studying

some theoretical properties of RBNs for some time (see [6,7] for

recent reviews). In RBNS, each node is assigned an update

function that prescribes the state of the node in the next time step,

given the state of its input nodes. This update function is chosen

from the set of all possible update functions according to some

probability distribution. Since each of the K inputs of a node can

be on or off, there are M~2K possible input states. The update

function has to specify the new state of a node for each of these

input states. Consequently, there are 2M different update functions

[7]. RTNs are boolean networks with threshold functions only.

The update function is Equation (1) with f (x)~sgn(x) (Text S1).

While some analytical results have been obtained for the general

class of RBNs, they usually apply only under some restricted

conditions, such as in the limit of very large networks, specific

network connectivities, or combinations of boolean functions. It

has been shown that some results derived under these assumptions

break down when only a subset of boolean functions is considered

[39–41]. This is the case for RTNs, and although interesting in

their own right, theoretical work done with RTNs seems to have

been limited [3,24,42,43].

Results

As we can see in Figure 1, cycles seem to dominate the

dynamics, independently of network size N and degree K .

Figure 1. Cycles dominate the dynamics. Average stability (Equation (2)) for different network sizes N , degree K and topology. K~N means
c~1. Equation (1) is solved up to n~108 times with wij*N (0,1), si*f{1,1g, f (x)~sgn(x) and sgn(0)~1. Noisy tails for K~2 result from insufficient
samples (Figure S4). Our measure is binary (the outcome is either 0 or 1 for each trial) and, for that reason, we do not find it helpful to present a
variance measure. Instead, we present full stability distributions for similar experiments in Figure 2. Boxed region represents the size of the genome-
wide regulatory networks of E. coli [45] and yeast [47].
doi:10.1371/journal.pone.0034285.g001

Most Networks in Wagner’s Model Are Cycling
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Stability (Equation (2) in Methods) has a maximum of 0:26 for

N~4, K~2, and decreases monotonically in both parameters.

For K~2, stability decreases almost as a power-law in N, and this

decrease is faster for larger K . A minimal stability value of

2:5|10{6 is found for N~K~60. Small networks of N~K~4
genes are about 3 times more likely to reach a cycle than a fixed

point steady state. For N~K~10, cycles are *12 times more

likely.

Also represented is a non-regular biological topology, with

exponential in-degree distribution, and scale-free out-degrees

(Text S1, Text S2, Figure S1 and Figure S2; see Table S2 and

Figure S3 for transient times and Figure S4 for sample sizes).

Figure 1 depicts the average stability for networks of different

sizes. We next ask if this average is a good proxy for typical

network behavior. In other words, what is the stability distribution

for networks of a given size? Figure 2 shows that this distribution is

bimodal, where some matrices are never stable, independently of

the initial state, while others always reach a fixed point from every

initial state. This suggests there could be two type of matrices in

this model: unstable and stable ones, with the former being much

more common than the latter. Interestingly, if we increase network

size to N~10 and sample random binary matrices, we still find

both types of matrices, but with a more uneven distribution. We

find 1928 matrices with stability~0 in our random sample of

N~10, against 87 with stability~1: a 22-fold difference.

We next ask how network density, c, affects stability. As we can

see in Figure 3, stability goes down with increasing c, and has a

maximum value of 0:23 for N~5 and minimal c. Again, cycles

dominate the dynamics, independent of network density, but

sparser networks seem more stable. Although sparse networks of

size N~10 with one or two regulatory inputs per gene (c~0:1 and

0:2) only have stability *0:14, they are almost twice as stable as

dense networks with c~1.

So far we have represented the off state of a gene by {1, and

although this seems to be the most common choice in the

literature, some authors use 0 to represent the off state [18,19]. As

shown in Figure 4, stability is higher in the f0,1g than the f{1,1g
map, and it goes down linearly with both N and c. The slope of

this decay is about the same for both maps, resulting in a 2*4 fold

difference in stability between the two. Interestingly, the f0,1g
map produces the only instances for which reaching a fixed point

is actually more likely than a cycle. This is the case for N~4, c~1
and N~10, c~0:1. In fact, using the f0,1g map, stability is

always greater than 0:5 for the sparsest (K~1) network of any size

(Figure S6; see Text S2, Figure S7 and Figure S8 for more

comparative studies of the two representations).

In Figure 5 we show that stability distributions are very similar

for binary and real matrices, with the real set having slightly more

unstable and fewer stable matrices than the binary one. To see

whether the same is true of the normalized means of the

distributions, i.e., the networks’ average stability, we return to

Figure 1 and see that for N~4 we find a stability value around

0:23, estimated by randomly sampling 106 real matrices. Random

sampling of 106 binary matrices estimates stability around 0:31. A

full enumeration of the total 65,536 binary matrices (N~4) yields

*0:37 stability. It seems that random sampling over-represents

unstable matrices, which are the most frequent ones in the full

distribution.

Finally, we compare stability for binary and real states. Figure 6

shows that the stability distributions are similar with either the sign

(binary) or the steep sigmoid (real) functions with a~10,100 and

even a~2 for all N and cw0:1. This is somewhat expected if you

Figure 2. Stability distribution is bimodal. Two types of matrices: stable (stability~1) and unstable (stability~0). Full enumeration of binary
network space for N~4 2N2

~65,536
� �

and a random sample of 3876 binary matrices for N~10. Full enumeration of the state space for both cases
2Nð Þ. For N~4, each bin corresponds to a specific stability value. There are a total of 26,135 unstable (first bin) and 16,574 stable (last bin) matrices in

the genotype space of binary matrices of size N~4. For N~10, different stability values are binned together in 17 bins of width *0:06 each. For that
reason, not all N~10 matrices included in the first bin have stability~0, for example. There are 1928 unstable matrices versus 87 stable ones in our
random sample of N~10. c~1; other parameters are as in Figure 1.
doi:10.1371/journal.pone.0034285.g002

Most Networks in Wagner’s Model Are Cycling
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compare these different normalization functions in Figure S13. In

fact,
lim

a??
z(x; a)~sgn(x). We also note that stability starts to

behave differently for low a~1 (Text S1, Text S2 and Figure S9).

More results are presented in Text S2.

Discussion

In this study, we have conducted extensive simulation analysis of

a subclass of random Boolean networks, known as Random

Threshold Networks (RTNs). We defined stability as the

probability of reaching a steady state and investigated the

dependence of stability on network size and density, types of

regulatory interactions and gene expressions and parameter

values. The main findings are:

1. There are vastly more cyclic solutions than steady state

solutions; only the latter have been assumed to be ‘‘viable’’

networks in previous studies.

Figure 3. Sparser networks are more stable. Average stability (Equation (2)) for different network densities c~fK=N : K~1,2,:::, Ng and sizes
N~5,10,20. Equation (1) is solved up to n~108 times for each c and N . Other parameters as in Figure 1. Dashed lines are guides to the eye. Shaded
region represents the density of biological networks [32,45].
doi:10.1371/journal.pone.0034285.g003

Figure 4. Stability is 2*4 fold higher with the f0,1g (squares) than the f{1,1g (circles) maps. Equation (1) is solved n~106 times for each
N , c~1 (a) and c, N~10 (b) with wij*N (0,1). For the f{1,1g map: si*f{1,1g, f (x)~sgn(x), sgn(0)~1. For the f0,1g map si*f0,1g, f (x)~H(x),
H(0)~1 (Text S1). Dashed lines are guides to the eye.
doi:10.1371/journal.pone.0034285.g004

Most Networks in Wagner’s Model Are Cycling
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2. Some networks never cycle while others always cycle

independently of the initial conditions.

3. Sparse networks are stable more often than dense networks.

4. Using 0 instead of {1 to represent the off state induces more

stable solutions. However, for well connected networks, stable

states are discovered more rapidly for {1 networks.

5. Binary and real valued weight matrices have similar stability

properties.

6. Discrete or continuous gene expression states may give similar

results, depending on the steepness of the sigmoid function.

7. Network topology seems to have a small effect on stability

8. The distribution of attractor lengths appears to decay more

slowly than the typical power law.

All of these results may have implications for both the use of the

RTN as a model of gene regulation and the properties of real

biological networks. For brevity, we focus solely on the former.

Figure 5. Binary and real matrices seem to have the same stability distribution. Equation (1) is solved for 2 sets of 376,992 random matrices
each, and full enumeration of state space 2N~32ð Þ. N~5, c~1, si*f{1,1g, f (x)~sgn(x), sgn(0)~1. wij*f{1,1g for binary matrices and
wij*N (0,1) for real ones.
doi:10.1371/journal.pone.0034285.g005

Figure 6. Steep sigmoid functions result in the same stability profiles as the sign function. Average stability (2) for different network sizes
N , c~1 (a) and densities c, N~10 (b) with different normalization functions f (x). Equation (1) is solved n~106 times with wij*N (0,1), si[½{1,1�,
f (x)~sgn(x) with sgn(0)~1 for the first curve, and the sigmoid f (x)~z(x; a) for all curves identified by steepness a (Text S1). For z(x; a), other
parameters are t~50, e~10{5 , T~100 and ESEw0:01. Dashed lines are guides to the eye.
doi:10.1371/journal.pone.0034285.g006

Most Networks in Wagner’s Model Are Cycling
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This is the first time networks of the size of an organism have

been simulated with this model. To the best of our knowledge, the

largest network previously studied has N~400 genes [44]. We

have extended this range to N~10,000 (Figure 1). This is

comparable to E. coli (*1,800 genes identified in its regulatory

network [45] or *4,300 annotated genes in the genome of the K-

12 strain [46]) and to yeast (3,420 network genes [47] or *5,8000
annotated genes in the Saccharomyces cerevisiae genome [48]). We

have also seen that stability seems to decay much faster for degree

K~N than for smaller K . For networks of size N~65, for

example, the probability of fixed points is already smaller than

10{4. More importantly, this number seems to approach 0 for

larger N, unlike the fat tails of K~2. In other words, by choosing

K~N, one cannot study stable states for organism-size, genome-

wide networks. Interestingly, dense networks are the most popular

choice in the literature [16,22]. Our results have clear implications

for the interpretation of previous studies [8,16]. By limiting their

analysis to small dense networks with stable dynamics, most

previous findings are limited in reach and may not apply to real

biological networks.

Figure 2 clearly suggests there are two types of networks in this

model: stable and unstable. This bimodal nature of the stability

distribution is not trivial. It is interesting that the stability of a

random pair of matrix and initial state tells us how likely it is that

the matrix is stable (or not) with any other random initial state. It is

the network that determines stability, not the initial state. This

implies that future studies using this model do not have to sample

many different initial states to characterize network dynamics.

Sampling pairs of networks and initial states, as we have done in

most of our study, should suffice. These two classes of networks

may have different topological properties. Since previous studies

only use viable networks, most of the networks they allow to evolve

are of the second type, i.e., stable. It is true that we do not expect

biological networks to be random; the question is if we do want to

start our simulations from a non-random set, are the chosen

matrices biologically relevant? And, by selecting these and not

others, what properties or biases are introduced into the

simulations, prior to evolution? To the best of our knowledge,

these questions have yet to be addressed.

A great deal has been written about scale-free networks in biology

[49,50]. In contrast, most networks we have studied here are

regular, since this is the topology frequently used with gene

regulatory networks [8,9], and thus the ones we are interested in

characterizing. We have shown, however, that different topologies,

including scale-free out-degree distributions, do not seem to change

the overall results, in agreement with previous studies [22,34].

In Figure 3 we see that stability seems to decay faster with c for

larger networks and in Figure S5 we have tried to show this

explicitly finding that for small to intermediate size networks

(N~10*20), the difference between the stability of dense and

sparse networks is maximized. This is about the size of networks

used in previous studies [11,33], where networks with different

densities coexist in a population (i.e. adding or deleting

connections is allowed). We believe this stability difference should

be taken into account in analysis of such studies. Further, network

stability does not seem to depend strongly on the nature of the

matrix weights, either binary or real-valued (Figure 5).

An important parameter of the model is how cells respond to

their input signals. That is to say, is gene regulation a switch-like

process, or is the response graded? While the former is

implemented by a step function, the latter is modeled as a sigmoid

curve (Figure S13). One could argue that a switch-like mechanism

already introduces a lot of robustness to the model, in the sense

that most changes do not produce a visible change in the

phenotype (for xw0 or xv0 in the figure). Sensitivity sharply

increases, however, at DxD?0, where the discontinuity occurs.

Close to zero, very small changes in the regulatory inputs of a gene

can quickly turn it on or off. In this DxD?0 region, the system is

clearly not robust. The opposite can be said of a not very steep

sigmoid function. By allowing continuous expression values, small

changes in x lead to small changes in a gene’s state s~f (x). This

choice, however, allows changes in positive or negative inputs

around DxDw1 (or even DxDw5) to still produce visible changes in

phenotype. In this sense, the system is less robust. We have shown

that the two choices are only equivalent, at least in terms of

stability, for large a, where the sigmoid behaves almost like a

switch (Figure 6). With small a, for which the sigmoid is less steep

and behaves more like a gradient, the choice between a step [8,14]

or a sigmoid function [9,16] makes a difference (see Text S2 and

Figure S12 on how to deal with f (0) in the discrete case).

As already mentioned, a lot of work has been done on analytical

properties of Random Boolean Networks [23,51] and it has been

suggested that some properties of RTNs do not follow analytical

results derived for the general class of RBNs [39–41]. The

dynamics of RBNs with canalizing functions only, for example,

seem to be dominated by fixed points [52]. We have shown here

that this is clearly not the case for RTNs. It has also been suggested

that the attractor length distribution of RBNs follows a power-law

[7,40]. Again we have shown this is not true for RTNs, which

instead seem to follow an exponential decay for a range of

parameters (Figure S10 and Figure S11) perhaps slightly slower

than initially suggested [43].

Methods

The attractor reached by the dynamical system (1) is uniquely

defined by the matrix W and the initial state S(0), and is either a

fixed point or a cycle. Let n represent the number of pairs of W
and S(0) for which Equation (1) is solved, and nf ƒn the number

of times the attractor is a fixed point. To estimate the probability

of reaching a fixed point steady state within the framework of this

model, we generated up to n~108 random pairs of matrices and

initial states, for different network sizes N and degrees K , and

measured

stability~nf =n, ð2Þ

which takes values between 0 and 1. The estimated probability of

cycles is given by 1{stability.

As mentioned before, most of the evolutionary studies done with

this model vary in the parameters used in Equation (1). We estimate

the dependence of stability measured by Equation (2) on most of

these parameters. We list in Table S1 all the variations we have

studied along with the corresponding figures and references. Special

relevance is given to the range of parameters used in previous

studies. For this reason, we mostly study small [8,9] and dense

[16,22] networks. Real gene networks, however, can be quite large

[45,47] and appear to be sparsely connected, with an average of two

transcriptional regulators per gene [32]. Stability estimates are also

shown for these more realistic topologies [49,53].

More detailed methods and algorithms are included in Text S1.

Supporting Information

Text S1 Supporting Methods. More details on experimental

procedures and algorithms for solving Equation (1) for both the

discrete and continuous cases.

(PDF)

Most Networks in Wagner’s Model Are Cycling
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Text S2 Supporting Results. More results exploring the

dependence of stability on parameters of the model. More

parameters are also explored. Sample sizes and transient times

are analyzed too.

(PDF)

Figure S1 Stability decreases with N even for scale-free
biological topologies. Average stability (Equation (2)) is plotted

for different network sizes N and topology. SKT~2. Ki~2 for

every gene, i, in the regular network. The Poisson network draws

the degree distributions from a Poisson distribution with mean and

variance equal to 2. exp-pow stands for exponential in-degree

distribution, and power-law out-degree distribution, both with

mean 2. Other parameters as in Figure 1.

(EPS)

Figure S2 Stability decreases with N in spite of topology
for K~4. Same as Figure S1 for SKT~4. In this case we do not

represent the biological topology, since biological networks usually

have SKT*2 [32].

(EPS)

Figure S3 Path length to equilibrium grows rapidly with
N. Represented is average transient time (i.e. the number of time

steps until the network reaches an attractor) as a function of

network size N and for different degrees K . Only fixed points are

considered. Equation (1) is solved up to n~108 times with

parameters as in Figure 1. Although coefficients of a least-squares

fit are shown in the figure legend for each K , these regression lines

are presented here only as a qualitative description. The estimates

are employed for the extrapolation of transient times of larger

networks, used to impose a cut-off on the convergence time of

Equation (1). Error bars are big but are not shown to avoid

cluttering the figure.

(EPS)

Figure S4 Sample size decreases with increasing N.
Shown is the number of samples from which the results presented

in Figure 1 are drawn. Increase of convergence time with N, as

depicted in Figure S3, limits sample size.

(EPS)

Figure S5 The effect of network degree on stability
seems to depend on network size. Represented is

stability K~K ’ð Þ{stability K~Nð Þ½ � for different K ’~2,4,6
and N. It seems that the difference in stability between sparse

networks and the densest one has a maximum for an intermediate

Nw10. After an initial increase, it goes down with increasing N,

where stability(K~N)?0, and thus the difference is reduced to

stability(K~K ’). This basically represents the difference between

the different plots in Figure 1.

(EPS)

Figure S6 Stability is higher than 0:5 for the f0,1g map
with K~1. The f0,1g map produces the only case where

reaching a fixed point is actually more likely than reaching a cycle

for any network size. This happens, however, for the uninteresting

case of K~1 regular networks, where each gene receives input

from only one other gene, or itself. Equation (1) is solved up to

n~108 times for each N and K with wij*N (0,1), si*f0,1g,
f (x)~H(x) and H(0)~1 (Text S1).

(EPS)

Figure S7 The f0,1g map has more stable and less
unstable matrices than f{1,1g. Equation (1) is solved for

N~4, c~1, wij*f{1,1g and full enumeration of the network

2N2

~65,536
� �

and state 2N~16ð Þ spaces. Other parameters are

as in Figure 4.

(EPS)

Figure S8 The f{1,1g map and real matrices allow for
faster discovery of novel phenotypes. Shown is the number

of samples needed to reach all 1024 fixed point attractors of

networks of size N~10, for different c and maps (a) or types of

regulatory interactions (either binary or real) (b). Equation (1) is

solved up to n~109 times for each c. For c~0:1 and 0:2, the

f0,1g map reaches the maximum sample size before the discovery

of all stable phenotypes. The results shown are for one run only.

Other parameters are as in Figure 4 (a) and Figure 5 (b).

(EPS)

Figure S9 Stability is not monotonic in a. Although still

low, the probability of fixed points has a maximum for

0:7vav0:8. Stability also seems slightly higher for a~100 than

a~10. Equation (1) is solved n~106 times with wij*N (0,1),
N~10, c~1, si[½{1,1� and sigmoidal f (x)~z(x; a), varying a

(Text S1). Other sigmoid parameters are as in Figure 6. The

dashed line is a guide to the eye.

(EPS)

Figure S10 Probability of attractor length decays slower
than a power-law. Shown is the attractor period distribution for

the two different maps and networks of size and density

N~K~10. The f{1,1g map has an antisymmetric property

where cycles of even length are overrepresented at least 2-fold

(Figure S11; [12,31]). For that reason, even and odd periods are

analyzed separately. Also shown is a least-squares fit for the f0,1g
map. Equation (1) is solved with parameters as in Figure 4.

(EPS)

Figure S11 Cycle size distribution for the f{1,1g map.
Represented is the attractor size distribution, as in Figure S10, but

just for the f{1,1gmap with the odd and even length cycles taken

together. Note how cycles of even length are overrepresented at

least 2-fold.

(EPS)

Figure S12 Different conventions for f (0) result in
similar stability profiles. Stability is shown for different N

and definitions of f (0) (Equation (1)). Networks are regular and

binary, wij*f{1,1g. random means we choose f (0)~1 or {1
with equal probability. f (0)~S(t{1) means si(t)Df (0)~si(t{1).
si*{1,0,1 for the latter and also for f (0)~0.

(EPS)

Figure S13 The sign and sigmoid functions are very
similar for a§10. The parameter a controls the steepness of the

sigmoid function, z(x; a), where
lim

a??
z(x; a)~sgn(x) (Text S1).

(EPS)

Table S1 List of all model variants and corresponding figures and

references. Most of the evolutionary studies done with this model vary

in the parameters used in Equation (1). We estimate the dependence

of stability measured by Equation (2) on most of these parameters.

(PDF)

Table S2 Limits on transient times as a function of N and K.

Table entries are the range of N values for which each T is used.

The time it takes for Equation (1) to reach an attractor grows with

N (Figure S3). To be able to produce Figure 1, a time limit

T(N; K)v? is enforced for large or dense networks.

(PDF)
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