Clustering

k-mean clustering

Genome 559: Introduction to Statistical and Computational Genomics

Elhanan Borenstein
A quick review

- The clustering problem:
 - partition genes into distinct sets with high homogeneity and high separation
 - Different representations
- Homogeneity vs Separation
- Many possible distance metrics
- Method matters; metric matters; definitions matter;
- One problem, numerous solutions
Hierarchical clustering: An agglomerative method

- Takes as input a distance matrix
- Progressively regroups the closest objects/groups
- The result is a tree - intermediate nodes represent clusters
- Branch lengths represent distances between clusters

Distance matrix

<table>
<thead>
<tr>
<th></th>
<th>object 1</th>
<th>object 2</th>
<th>object 3</th>
<th>object 4</th>
<th>object 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>object 1</td>
<td>0.00</td>
<td>4.00</td>
<td>6.00</td>
<td>3.50</td>
<td>1.00</td>
</tr>
<tr>
<td>object 2</td>
<td>4.00</td>
<td>0.00</td>
<td>6.00</td>
<td>2.00</td>
<td>4.50</td>
</tr>
<tr>
<td>object 3</td>
<td>6.00</td>
<td>6.00</td>
<td>0.00</td>
<td>5.50</td>
<td>6.50</td>
</tr>
<tr>
<td>object 4</td>
<td>3.50</td>
<td>2.00</td>
<td>5.50</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>object 5</td>
<td>1.00</td>
<td>4.50</td>
<td>6.50</td>
<td>4.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
K-mean clustering

Divisive (vs. Agglomerative)
K-mean clustering

- An algorithm for partitioning n observations/points into k clusters such that each observation belongs to the cluster with the nearest mean/center.
K-mean clustering: Chicken and egg

- An algorithm for partitioning \(n \) observations/points into \(k \) clusters such that each observation belongs to the cluster with the nearest mean/center.

- The chicken and egg problem:
 I do not know the means before I determine the partitioning into clusters.
 I do not know the partitioning into clusters before I determine the means.
K-mean clustering: Chicken and egg

- An algorithm for partitioning \(n \) observations/points into \(k \) clusters such that each observation belongs to the cluster with the nearest mean/center.

- **The chicken and egg problem:**
 - I do not know the means before I determine the partitioning into clusters.
 - I do not know the partitioning into clusters before I determine the means.

- **Key principle - cluster around mobile centers:**
 - Start with some **random** locations of means/centers, partition into clusters according to these centers, and then correct the centers according to the clusters.
 [similar to EM (expectation-maximization) algorithms]
K-mean clustering algorithm

- The number of centers, k, has to be specified a-priori

- **Algorithm:**
 1. Arbitrarily select k initial centers
 2. Assign each element to the closest center
 3. Re-calculate centers (mean position of the assigned elements)
 4. Repeat 2 and 3 until ...
The number of centers, k, has to be specified a-priori.

Algorithm:

1. Arbitrarily select k initial centers
2. Assign each element to the closest center
3. Re-calculate centers (mean position of the assigned elements)
4. Repeat 2 and 3 until one of the following termination conditions is reached:
 i. The clusters are the same as in the previous iteration
 ii. The difference between two iterations is smaller than a specified threshold
 iii. The maximum number of iterations has been reached

How can we do this efficiently?
Partitioning the space

- Assigning elements to the closest center
Partitioning the space

- Assigning elements to the closest center

![Diagram showing partitioning of space with points A and B, and the threshold line indicating which point is closer to A or B.](image)
Partitioning the space

- Assigning elements to the closest center

![Diagram showing partitioning the space with points A, B, and C, and lines indicating which points are closer to each other.](image)
Partitioning the space

- Assigning elements to the closest center
Partitioning the space

- Assigning elements to the closest center
Voronoi diagram

- Decomposition of a metric space determined by distances to a specified discrete set of “centers” in the space
- Each colored cell represents the collection of all points in this space that are closer to a specific center s than to any other center
- Several algorithms exist to find the Voronoi diagram.
The number of centers, k, has to be specified a priori.

Algorithm:

1. Arbitrarily select k initial centers
2. Assign each element to the closest center (Voronoi)
3. Re-calculate centers (mean position of the assigned elements)
4. Repeat 2 and 3 until one of the following termination conditions is reached:
 i. The clusters are the same as in the previous iteration
 ii. The difference between two iterations is smaller than a specified threshold
 iii. The maximum number of iterations has been reached
K-mean clustering example

- Two sets of points randomly generated
 - 200 centered on (0,0)
 - 50 centered on (1,1)
K-mean clustering example

- Two points are randomly chosen as centers (stars)
K-mean clustering example

- Each dot can now be assigned to the cluster with the closest center
K-mean clustering example

- First partition into clusters

iter.max = 1 ; iterations = 1
K-mean clustering example

- Centers are re-calculated
K-mean clustering example

- And are again used to partition the points
K-mean clustering example

- Second partition into clusters

iter.max = 2 ; iterations = 2
K-mean clustering example

- Re-calculating centers again

iter.max = 2 ; iterations = 2
K-mean clustering example

- And we can again partition the points
K-mean clustering example

- Third partition into clusters
K-mean clustering example

- After 6 iterations:
- The calculated centers remains stable
K-mean clustering: Summary

- The convergence of k-mean is usually quite fast (sometimes 1 iteration results in a stable solution)

- K-means is time- and memory-efficient

Strengths:
- Simple to use
- Fast
- Can be used with very large data sets

Weaknesses:
- The number of clusters has to be predetermined
- The results may vary depending on the initial choice of centers
K-mean clustering: Variations

- Expectation-maximization (EM): maintains probabilistic assignments to clusters, instead of deterministic assignments, and multivariate Gaussian distributions instead of means.

- k-means++: attempts to choose better starting points.

- Some variations attempt to escape local optima by swapping points between clusters.
The take-home message

Hierarchical clustering

K-mean clustering

D’haeseleer, 2005
What else are we missing?
What else are we missing?

- What if the clusters are not “linearly separable”?
Clustering methods

- We can distinguish between two types of clustering methods:
 1. **Agglomerative**: These methods build the clusters by examining small groups of elements and merging them in order to construct larger groups.
 2. **Divisive**: A different approach which analyzes large groups of elements in order to divide the data into smaller groups and eventually reach the desired clusters.

- There is another way to distinguish between clustering methods:
 1. **Hierarchical**: Here we construct a hierarchy or tree-like structure to examine the relationship between entities.
 2. **Non-Hierarchical**: In non-hierarchical methods, the elements are partitioned into non-overlapping groups.