Project Design

Genome 559: Introduction to Statistical and Computational Genomics

Elhanan Borenstein
Hypothesis:
The average degree in the metabolic networks of Prokaryotes is higher than the average degree in the metabolic networks of Eukaryotes
KEGG: Kyoto Encyclopedia of Genes and Genomes

KEGG is a database resource for understanding high-level functions and utilities of the biological system, such as the cell, the organism and the ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies (See Release notes for new and updated features).

Main entry point to the KEGG web service

- KEGG2
- KEGG Table of Contents
- Update notes

Data-oriented entry points

- KEGG PATHWAY
 - KEGG pathway maps [Pathway list]
- KEGG BRITE
 - BRITE functional hierarchies [Brite list]
- KEGG MODULE
 - KEGG modules [Module list]
- KEGG DISEASE
 - Human diseases [Cancer | Infectious disease]
- KEGG DRUG
 - Drugs [ATC drug classification]
- KEGG ORTHOLOGY
 - Ortholog groups [KO system]
- KEGG GENOME
 - Genomes [KEGG organisms]
- KEGG GENES
 - Genes and proteins Release history
- KEGG LIGAND
 - Chemical information [Reaction modules]

Entry point for wider society

- KEGG MEDICUS
 - Health-related information resource

Organism-specific entry points

- KEGG Organisms
 - Enter org code(s) Go
 - hsa hsa eco

Analysis tools

- KEGG Mapper
 - KEGG PATHWAY/BRITE/MODULE mapping tools
- KEGG Atlas
 - Navigation tool to explore KEGG global maps
- KAAS
 - KEGG automatic annotation server
- BLAST/FASTA
 - Sequence similarity search
- SIMCOMP
 - Chemical structure similarity search
- PathPred
 - Biodegradation/biosynthesis pathway prediction

Copyright 1995-2012 Kanehisa Laboratories
KEGG: Kyoto Encyclopedia of Genes and Genomes

KEGG is a database resource for understanding high-level functions and utilities of the biological system, such as the cell, the organism and the ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies (See Release notes for new and updated features).

Main entry point to the KEGG web service
- KEGG2
- KEGG Table of Contents
- Update notes

Data-oriented entry points
- KEGG PATHWAY
 - KEGG pathway maps [Pathway list]
- KEGG BRITE
 - BRITE functional hierarchies [Brite list]
- KEGG MODULE
 - KEGG modules [Module list]
- KEGG DISEASE
 - Human diseases [Cancer | Infectious disease]
- KEGG DRUG
 - Drugs [ATC drug classification]
- KEGG ORTHOLOGY
 - Ortholog groups [KO system]
- KEGG GENOME
 - Genomes [KEGG organisms]
- KEGG GENES
 - Genes and proteins [Release history]
- KEGG LIGAND
 - Chemical information [Reaction modules]

Entry point for wider society
- KEGG MEDICUS
 - Health-related information resource

Organism-specific entry points
- KEGG Organisms
 - Enter org code(s) [Go] hsa hsa eco
KEGG Organisms: Complete Genomes

Eukaryotes: 180 Bacteria: 2149 Archaea: 149

Genomes | Draft | ESTs | Meta | Pan

<table>
<thead>
<tr>
<th>Category</th>
<th>Species</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eukaryotes</td>
<td>hsa Homo sapiens (human)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>ptr Pan troglodytes (chimpanzee)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>pps Pan paniscus (bonobo)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>ggo Gorilla gorilla gorilla (western lowland gorilla)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>pon Pongo abelii (Sumatran orangutan)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>mcc Macaca mulatta (rhesus monkey)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>mmu Mus musculus (mouse)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>mo Rattus norvegicus (rat)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>cfa Canis familiaris (dog)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>aml Ailuropoda melanoleuca (giant panda)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>fca Felis catus (domestic cat)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>bta Bos taurus (cow)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>ssc Sus scrofa (pig)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>ecb Equus caballus (horse)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>mdo Monodelphis domestica (opossum)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>shr Sarcophilus harrisii (Tasmanian devil)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>oea Ornithorhynchus anatinus (platypus)</td>
<td>RefSeq</td>
</tr>
<tr>
<td>Vertebrates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td>gga Gallus gallus (chicken)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>mpp Meleagris gallopavo (turkey)</td>
<td>RefSeq</td>
</tr>
<tr>
<td></td>
<td>tgu Taeniopygia guttata (zebra finch)</td>
<td>RefSeq</td>
</tr>
<tr>
<td>Reptiles</td>
<td>acs Anolis carolinensis (green anole)</td>
<td>RefSeq</td>
</tr>
</tbody>
</table>
Rhodobacter sphaeroides 2.4.1

Genome Information

- **T number**: T00284
- **Org code**: rsp
- **Aliases**: RH004, 272943
- **Full name**: Rhodobacter sphaeroides 2.4.1
- **Definition**: Rhodobacter sphaeroides 2.4.1
- **Annotation**: manual
- **Taxonomy**: TAX: 272943
- **Lineage**: Bacteria; Proteobacteria; Alphaproteobacteria; Rhodobacterales; Rhodobacteraceae; Rhodobacter

Data source: RefSeq (Project: 97655)

Original DB: JGI, Texas

Comment: Photosynthetic alpha-proteobacterium

Chromosome: 1: Circular
- **Sequence**: RS: NC_007493
- **Length**: 3188609

Chromosome: 2: Circular
- **Sequence**: RS: NC_007494
- **Length**: 973716
Escherichia coli K-12 MG1655: b2799

<table>
<thead>
<tr>
<th>Entry</th>
<th>b2799</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene name</td>
<td>fusD</td>
</tr>
<tr>
<td>Definition</td>
<td>3,4-dihydroxypropanoate dehydratase (EC:1.1.1.77)</td>
</tr>
<tr>
<td>Ortholog</td>
<td>M0004B</td>
</tr>
<tr>
<td>Organism</td>
<td>eco</td>
</tr>
</tbody>
</table>
| **Pathway** | | \[
| | Pyruvate metabolism | | | | | |
| | Glyoxylate and dicarboxylate metabolism |
| | Microbial metabolism in diverse environments |
| **Class** | Metabolism; Carbohydrate metabolism; Pyruvate metabolism |
| | [PATH:eco000620] |
| | Metabolism; Carbohydrate metabolism; Glyoxylate and dicarboxylate metabolism [PATH:eco00630] |
| **SSDB** | | Ortholog | Paralog | Gene cluster | GFF | Motif |
| **Motif** | From: Pc-ADH | Pc-ADH_2 |
| **Other DBs** | | NCBI-GI: 345452723 |
| | | NCBI-GeneID: 947273 |
| | | FusD: fusD |
| | | RegulonDB: ECR120003315 |
| | | EcoGene: ES10351 |
| | | ECOCYC: EC10351 |
| | | ASAP: ABE-0000177 |
| | | UniProt: POA631 |
| **Position** | Complement: (2928887..2931035) |
KEGG FTP

KEGG FTP Site for Academic Users

The KEGG data may be downloaded by academic users from the KEGG FTP site:

ftp://ftp genome.jp/pub/kegg/

Non-academic users are required to obtain a license agreement for downloading KEGG.

- Terms of use
- Licensing from Pathway Solutions

Announcement:
A new directory, "module", is created.

Posted on December 22, 2010 ➤ Past announcements

Directories and Files

pathway/ KEGG PATHWAY (daily updated)
map/ Reference pathway maps
ko/ Reference pathway maps (KO)
ec/ Reference pathway maps (EC)
nr/ Reference pathway maps (reaction)
organisms/ Organism-specific pathway maps
pathway/ Pathway entries (text data)
map_title.tab List of pathways available

module/ KEGG MODULE (daily updated) New!
ko/ Reference module maps (KO) - to be added
organisms/ Organism-specific module maps - to be added
module/ Module entries (text data)
ENTRY T00001 Complete Genome
NAME hin, H.influenzae, HAEIN, 71421
DEFINITION Haemophilus influenzae Rd KW20 (serotype d)
ANNOTATION manual
TAXONOMY TAX:71421
LINEAGE Bacteria; Proteobacteria; Gammaproteobacteria; Pasteurellales;
Pasteurellaceae; Haemophilus
DATA_SOURCE RefSeq
ORIGINAL_DB JCVI-CMR
DISEASE Meningitis, septicemia, otitis media, sinusitis and chronic
bronchitis
CHROMOSOME Circular
SEQUENCE RS:NC_000907
LENGTH 1830138
STATISTICS Number of nucleotides: 1830138
Number of protein genes: 1657
Number of RNA genes: 81
REFERENCE PMID:7542800
AUTHORS Fleischmann RD, et al.
TITLE Whole-genome random sequencing and assembly of Haemophilus
influenzae Rd.
///
ENTRY T00002 Complete Genome
NAME mge, M.genitalium, MYCGE, 243273
DEFINITION Mycoplasma genitalium G-37
ANNOTATION manual
TAXONOMY TAX:243273
LINEAGE Bacteria; Tenericutes; Mollicutes; Mycoplasmataceae; Mycoplasma
...
ace:Acel_0001	ko:K02313
ace:Acel_0002	ko:K02338
ace:Acel_0003	ko:K03629
ace:Acel_0005	ko:K02470
ace:Acel_0006	ko:K02469
ace:Acel_0012	ko:K03767
ace:Acel_0018	ko:K01664
ace:Acel_0019	ko:K08884
ace:Acel_0020	ko:K05364
ace:Acel_0026	ko:K01552
ace:Acel_0029	ko:K00111
ace:Acel_0031	ko:K00627
ace:Acel_0032	ko:K00162
ace:Acel_0033	ko:K00161
ace:Acel_0035	ko:K00817
ace:Acel_0036	ko:K07448
ace:Acel_0039	ko:K04750
ace:Acel_0041	ko:K03281
ace:Acel_0048	ko:K08323
ace:Acel_0051	ko:K03734
ace:Acel_0052	ko:K03147
ace:Acel_0057	ko:K03088
ace:Acel_0059	ko:K01010
ace:Acel_0061	ko:K03711
ace:Acel_0062	ko:K06980
ace:Acel_0063	ko:K07560
ace:Acel_0072	ko:K12373
ace:Acel_0075	ko:K01834
ace:Acel_0076	ko:K09796

...
ENTRY	K00001	KO
NAME | E1.1.1.1, adh
DEFINITION | alcohol dehydrogenase [EC:1.1.1.1]
PATHWAY | ko00010 Glycolysis / Gluconeogenesis
ko00071 Fatty acid metabolism
MODULE | M00236 Retinol biosynthesis, beta-cacrotene => retinol
CLASS | Metabolism; Carbohydrate Metabolism; Glycolysis / Gluconeogenesis
[PATH:ko00010]
Metabolism; Lipid Metabolism; Fatty acid metabolism [PATH:ko00071]
Metabolism; Amino Acid Metabolism; Tyrosine metabolism
[PATH:ko00350]
Metabolism; Metabolism of Cofactors and Vitamins; Retinol metabolism
DBLINKS | RN: R00623 R00754 R02124 R04805 R04880 R05233 R05234 R06917 R06927
R07105 R08281 R08306 R08310
COG: COG1012 COG1062 COG1064 COG1454
GO: 0004022 0004023 0004024 0004025
GENES | HSA: 124(ADH1A) 125(ADH1B) 126(ADH1C) 127(ADH4) 130(ADH6) 131(ADH7)
PTR: 461394(ADH4) 461395(ADH6) 461396(ADH1B) 471257(ADH7)
744064(ADH1A) 744176(ADH1C)
MCC: 707367 707682(ADH1A) 708520 711061(ADH1C)
...
PAS: Pars_0396 Pars_0534 Pars_0547 Pars_1545 Pars_2114
TPE: Tpen_1006 Tpen_1516
///

ENTRY	K00002	KO
NAME | E1.1.1.2, adh
DEFINITION | alcohol dehydrogenase (NADP+) [EC:1.1.1.2]
PATHWAY | ko00010 Glycolysis / Gluconeogenesis
ko00561 Glycerolipid metabolism
...
R00005: 00330: C01010 => C00011
R00005: 00791: C01010 => C00011
R00005: 01100: C01010 <=> C00011
R00006: 00770: C00022 => C00900
R00008: 00362: C06033 => C00022
R00008: 00660: C00022 => C06033
R00010: 00500: C01083 => C00031
R00013: 00630: C00048 => C01146
R00013: 01100: C00048 <=> C01146
R00014: 00010: C00022 + C00068 => C05125
R00014: 00020: C00068 + C00022 => C05125
R00014: 00290: C00022 => C05125
R00014: 00620: C00068 + C00022 => C05125
R00014: 00650: C00068 + C00022 => C05125
R00014: 01100: C00022 <=> C05125
R00018: 00960: C00134 => C06366
R00019: 00630: C00080 => C00282
R00019: 00680: C00080 => C00282
R00021: 00910: C00025 <= C00064
R00022: 00520: C01674 => C00140
...

From Small Scripts to Full Projects

- Use a top-down approach
- Divide and conquer
Designing with Pseudo-Code Comments

Preprocessing
============

Build networks and calc degree
===============================

Print output
=============
Preprocessing
===============
Read and store mapping from KO to RN

Read and store mapping from RN to edges

Read and store species list and lineages

Build networks and calc degree
=================================

Loop over species

Read KO list of current species

Map KO to RN and RN to edges

Calculate degree

Store: species, degree, phyla

Print output
=============

Calculated average degree per P and per E

Print
Add notes to self

Preprocessing
=============

Read and store mapping from KO to RN

Read and store mapping from RN to edges

Read and store species list and lineages

Build networks and calc degree
===================================

Loop over species

Read KO list of current species

Map KO to RN and RN to edges

-> Here I should have a full network
-> TBD: What data structure should I use?

Calculate degree

Store: species, degree, phyla
-> TBD: How do I store results?

Print output
=============

Calculated average degree per P and per E

Print
Add variables, loops, if-s, function calls

Preprocessing
#
KO_file = 'ko.txt'
KO_to_RN = {}

RN_file = 'reaction.txt'
RN_to_EDGES = {}

Genomes_file = 'genome.txt'
species_list = []
species_lineage = {}

Build networks and calc degree
#

Loop over species
for species in species_list:
 # Read KO list of current species
 # Map KO to RN and RN to edges
 # -> Here I should have a full network
 # -> TBD: What data structure should I use?
 # Calculate degree
 degree = CalcDegree(network)
 # Store: species, degree, phyla
 # -> TBD: How do I store results?

Print output
#
Calculated average degree per P and per E
Print
Start coding small chunks

Preprocessing
=============

Read and store mapping from KO to RN
KO_file = 'ko.txt'
KO_to_RN = {}

Read and store mapping from RN to edges
RN_file = 'reaction.txt'
RN_to_EDGES = {}

Read and store species list and lineages
Genomes_file = 'genome.txt'
species_list = []
species_lineage = {}

Build networks and calc degree
=====================================

Loop over species
for species in species_list:
 # Read KO list of current species
 # Map KO to RN and RN to edges
 # -> Here I should have a full network
 # -> TBD: What data structure should I use?
 # Calculate degree
 degree = CalcDegree(network)
 # Store: species, degree, phyla
 # -> TBD: How do I store results?

Print output
=============

Calculated average degree per P and per E

Print
Final Exam

- **Two parts:**
 - *The first will focus on the bioinformatics topics covered in class.*
 - *The second on programming.*

- Both parts will comprise very simple and brief questions to account for the short time allowed for the exam.

- Open books (basically, any static resource you want is ok).
Common Mistakes: Parsimony

- Figure out how many possible Nearest-Neighbor Interchanges there are on a specific unrooted tree with 8 leaves (that is, the number of competing trees that would be considered in one step of the hill-climbing method using NNIs). Hint: a subtree can be any part of the tree, including a single leaf. Justify your answer.
Common Mistakes: Programming

- Comments !!!
- continue, elif, if ...

```python
for items in list:
    if (...):
        do_something
    else:
        continue

if (a > 10):
    do_nothing
else:
    print ...
```

- Lists vs. Dictionaries
... it’s a wrap ...
Hope you enjoyed!