Sequence comparison: Score matrices

http://faculty.washington.edu/jht/GS559_2013/

Genome 559: Introduction to Statistical and Computational Genomics
Prof. James H. Thomas
FYI - informal inductive proof of best alignment path

Consider the last step in the best alignment path to node α below. This path must come from one of the three nodes shown, where X, Y, and Z are the cumulative scores of the best alignments up to those nodes. We can reach node α by three possible paths: an A-B match, a gap in sequence A or a gap in sequence B:

$$
\text{seq } A
\begin{array}{c}
X \\
\bullet
\end{array}
\begin{array}{c}
Y \\
\bullet
\end{array}
\begin{array}{c}
\text{match} \\
\text{gap}
\end{array}
\begin{array}{c}
\text{gap} \\
\rightarrow
\end{array}
\begin{array}{c}
Z \\
\bullet
\end{array}
\begin{array}{c}
\rightarrow
\end{array}
\begin{array}{c}
\alpha \\
\bullet
\end{array}
\text{seq } B
$$

The best-scoring path to α is the maximum of:

$X + \text{match}$

$Y + \text{gap}$

$Z + \text{gap}$

BUT the best paths to X, Y, and Z are analogously the max of their three upstream possibilities, etc. Inductively QED.
Local alignment - review

\[
\begin{array}{cccc}
A & C & G & T \\
A & 2 & -7 & -5 & -7 \\
C & -7 & 2 & -7 & -5 \\
G & -5 & -7 & 2 & -7 \\
T & -7 & -5 & -7 & 2 \\
\end{array}
\]

\[d = -5\]

\[
\begin{array}{cccc}
A & A & A & G \\
0 & 0 & 0 & 0 \\
A & 0 & 2 & 2 & 0 \\
G & 0 & 0 & 0 & 4 \\
C & 0 & 0 & 0 & 0 \\
\end{array}
\]

(no arrow means no preceding alignment)
Local alignment

- Two differences from global alignment:
 - If a score is negative, replace with 0.
 - Traceback from the highest score in the matrix and continue until you reach 0.

- Global alignment algorithm: Needleman-Wunsch.
- Local alignment algorithm: Smith-Waterman.
dot plot of two DNA sequences

overlay of the global DP alignment path
Protein score matrices

• Quantitatively represent the degree of conservation of typical amino acid residues over evolutionary time.

• All possible amino acid changes are represented (matrix of size at least 20 x 20).

• Most commonly used are several different BLOSUM matrices derived for different degrees of evolutionary divergence.

• DNA score matrices are simpler (and conceptually similar).
BLOSUM62 Score Matrix

	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V	B	Z	X	*		
A	4	-1	-2	-2	0	-1	0	-2	-1	-1	-1	-1	0	-3	-2	0	-2	0	-1	-4	0	-1	0	-4		
R	-1	5	0	-2	3	1	0	-2	0	3	-2	2	1	-3	-2	1	0	-4	2	-3	0	1	-4			
N	-2	0	6	1	-3	0	0	0	1	-3	-3	0	2	-2	-3	1	0	4	-2	-3	3	0	1	-4		
D	-2	2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	3	-3	4	1	-1	-4		
C	0	-3	-3	3	9	-3	-4	-3	-3	1	-1	-3	-2	-3	-1	-2	-1	-2	-1	-3	-3	-2	-4			
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	1	0	-1	2	1	-2	0	2	-3	-1	-4	
E	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	1	0	-1	3	2	-2	2	1	4	-1	-4	
G	0	-2	0	1	-3	2	-2	-2	6	0	-4	-2	-3	-3	-3	0	0	-2	2	-3	-3	-1	0	-2	-1	
H	-2	0	1	-3	0	0	2	8	3	-3	-1	2	-1	-2	-1	-2	1	-2	2	-3	3	3	-3	-1		
I	-1	-3	-3	-3	1	-3	1	0	-3	-2	1	-3	-3	3	3	3	1	0	-3	1	0	-3	3	-3		
L	-1	-2	-3	-4	1	-2	-3	-4	2	4	-2	2	0	-3	2	1	-2	1	-1	4	-3	-3	1	-4		
K	1	2	0	-1	-3	1	1	2	-1	1	2	-1	3	2	5	1	-3	1	0	-1	3	-2	2	0	1	
M	1	-1	-2	-3	-1	0	2	-3	2	1	2	1	5	0	2	1	1	1	1	3	-3	1	-1			
F	-2	3	-3	-3	-3	1	0	0	3	0	6	-4	2	2	1	3	1	3	1	-3	3	-3	1	-4		
P	1	-2	2	-1	-1	1	2	-2	-3	3	-3	1	0	-2	-2	-3	1	-2	-1	4	1	-3	2	-2		
S	1	-1	1	0	1	0	0	-1	1	2	0	-1	-2	2	-1	-2	1	-3	4	0	0	0	0	-4		
T	0	-1	0	1	-1	-1	1	2	-2	1	-1	-1	-2	-1	1	1	5	2	-2	0	1	-1	0	-4		
W	3	-3	4	-4	-2	-3	-2	-3	-3	1	1	4	-3	2	1	1	2	3	-4	3	-3	-2	4			
Y	2	-2	-3	-2	-2	-3	2	-3	2	1	-1	-2	1	3	-3	2	2	7	1	-3	3	1	-1	-4		
V	0	-3	-3	-3	-1	-2	2	-3	-3	3	1	2	1	1	-2	2	0	-3	-1	4	3	-3	2	-1		
B	-2	1	3	4	-3	0	1	-1	0	-3	-4	0	3	-3	-2	0	-1	-4	3	-3	4	1	-1	-4		
Z	-1	0	0	1	-3	3	4	-2	0	-3	-3	1	-1	-3	-1	0	-1	3	-2	-2	1	4	1	-4		
X	0	-1	-1	-1	-1	1	-1	1	-1	-1	1	-1	1	-1	-1	1	-2	0	0	-2	-1	-1	1	-1		
*	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-1
Amino acid structures

Hydrophobic

- glycine (G)
- alanine (A)
- valine (V)
- leucine (L)
- isoleucine (I)
- methionine (M)
- proline (P)
- tryptophan (W)
- phenylalanine (F)

Polar

- cysteine (C)
- serine (S)
- threonine (T)
- tyrosine (Y)
- asparagine (N)
- glutamine (Q)

Charged

- histidine (H)
- lysine (K)
- arginine (R)
- aspartate (D)
- glutamate (E)
BLOSUM62 Score Matrix

| | A | R | N | D | C | Q | E | G | H | I | L | K | M | F | P | S | T | W | Y | V |
|---|-----|
| A | 4 | -1 | -2 | -2 | 0 | -1 | -1 | 0 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 0 | -3 | -2 | 0 |
| R | -1 | 5 | 0 | -2 | -3 | 1 | 0 | -2 | 0 | -3 | -2 | 2 | -1 | -3 | -2 | -1 | -1 | -3 | -2 | -3 |
| N | -2 | 0 | 6 | -3 | 0 | 0 | 0 | 1 | -3 | -3 | 0 | -2 | -3 | -2 | 1 | 0 | -4 | -2 | -3 |
| D | -2 | -2 | 1 | 6 | -3 | 0 | 2 | -1 | -1 | -3 | -4 | -1 | -3 | -3 | -1 | 0 | -1 | -4 | -3 | -3 |
| C | 0 | -3 | -3 | -3 | 9 | -3 | -4 | -3 | -3 | -1 | -3 | -1 | -1 | -3 | -2 | -3 | -1 | -1 | -2 | -2 |
| Q | -1 | 1 | 0 | 0 | -3 | 5 | 2 | -2 | 0 | -3 | -2 | 2 | -1 | 0 | -3 | -1 | 0 | -3 | -1 | -2 |
| E | -1 | 0 | 0 | 2 | -4 | 2 | 5 | -2 | 0 | -3 | -3 | 1 | -2 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| G | 0 | -2 | 0 | -1 | -3 | -2 | -2 | 6 | -2 | -4 | -4 | -2 | -3 | -3 | -2 | 0 | -2 | -2 | -3 | -3 |
| H | -2 | 0 | 1 | -1 | -3 | 0 | 0 | -2 | 8 | -3 | -3 | -1 | -2 | -1 | -2 | -1 | -2 | -2 | -2 | -3 |
| I | -1 | -3 | -3 | -3 | -1 | -3 | -3 | -4 | -3 | 4 | 2 | -3 | 1 | 0 | -3 | -2 | -1 | -3 | -1 | 3 |
| L | -1 | -2 | -3 | -4 | -1 | -2 | -3 | -4 | -3 | 2 | 4 | -2 | 2 | 0 | -3 | -2 | -1 | -2 | -1 | 1 |
| K | -1 | 2 | 0 | -1 | -3 | 1 | 1 | 2 | 1 | -3 | -2 | 5 | -1 | -3 | -1 | 0 | -3 | -1 | -2 | -2 |
| M | -1 | -1 | -2 | -3 | -1 | 0 | 2 | -3 | -2 | 1 | 2 | 1 | 5 | 0 | -2 | -1 | -1 | -1 | -1 | 1 |
| F | -2 | -3 | -3 | -3 | -2 | -3 | -3 | -3 | -1 | 0 | 0 | -3 | 0 | 0 | 6 | -4 | -2 | -2 | 1 | 3 |
| P | -1 | -2 | -2 | -1 | -3 | -1 | -2 | -2 | -3 | -3 | -1 | -2 | -4 | 7 | -1 | -1 | -4 | -3 | -2 |
| S | 1 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | 1 | -2 | -2 | 0 | -1 | -2 | -1 | 4 | 1 | -3 | -2 | -2 |
| T | 0 | -1 | 0 | -1 | -1 | -1 | -1 | -2 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 5 | -2 | -2 | 0 |
| W | -3 | -3 | -4 | -4 | -2 | -2 | -3 | -2 | -3 | -2 | -3 | -1 | 1 | 1 | -4 | -3 | -2 | 1 | 1 | 2 |
| Y | -2 | -2 | -2 | -3 | -2 | -1 | -2 | -3 | 2 | -1 | -1 | -2 | -1 | 3 | -3 | -2 | -2 | -2 | 2 | 7 |
| V | 0 | -3 | -3 | -3 | -1 | -2 | -2 | -3 | -3 | 3 | 1 | -2 | 1 | -1 | -2 | -2 | 0 | -3 | -1 | 4 |
Amino acid structures

Hydrophobic
- glycine G
- alanine A
- valine V
- leucine L
- isoleucine I
- methionine M
- proline P
- tryptophan W

Polar
- cysteine C
- serine S
- threonine T
- tyrosine Y
- asparagine N
- glutamine Q

Charged
- histidine H
- lysine K
- arginine R
- aspartate D
- glutamate E
Deriving BLOSUM scores

- Find sets of sequences whose alignment is thought to be correct (this is partly bootstrapped by alignment).

- Measure how often various amino acid pairs occur in the alignments.

- Normalize this to the expected frequency of such pairs randomly in the same set of alignments.

- Derive a log-odds score for aligned vs. random.
Example of alignment block (the BLO part of BLOSUM)

- Thousands of such blocks go into computing a single BLOSUM matrix.
- Represent full diversity of sequences.
- Results are summed over all columns of all blocks.
Pair frequency vs. expectation

Actual aligned pair frequency:

\[q_{ij} = \frac{1}{T} \sum c_{ij} \]

where \(c_{ij} \) is the count of \(ij \) pairs and \(T \) is the total pair count.

Randomly expected pair frequency:

\[e_{aa} = p_a p_a \]

\[e_{ab} = p_a p_b + p_b p_a = 2 p_a p_b \]

where \(p_a \) and \(p_b \) are the overall probabilities (frequencies) of specific residues \(a \) and \(b \).
Log-odds score calculation (so adding scores == multiplying probabilities)

\[
 s_{ij} = \log_2 \frac{q_{ij}}{e_{ij}}
\]

For computational speed often rounded to nearest integer and (to reduce round-off error) they are often multiplied by 2 (or more) first, giving a “half-bit” score:

\[
 \text{matrixScore} = (\text{rounded}) \ 2 \log_2 \frac{q_{ij}}{e_{ij}}
\]

(computers can add integers faster than floats)
BLOSUM62 matrix (half-bit scores)

(9 half-bits = 4.5 bits)

Frequency of \(C \) residue over all proteins: 0.0162 (you have to look this up)

Reverse calculation of aligned \(C-C \) pair frequency in BLOSUM data set:

\[
\frac{q_{cc}}{e_{cc}} = 2^{(4.5)} = 22.63 \quad \text{Thus} \quad q_{cc} = 22.63 \times 0.000262 = 0.00594
\]

\[
e_{cc} = 0.0162 \times 0.0162 = 0.000262
\]
Constructing Blocks

- Blocks are ungapped alignments of multiple sequences, usually 20 to 100 amino acids long.

- Cluster the members of each block according to their percent identity.

- Make pair counts and score matrix from a large collection of similarly clustered blocks.

- Each BLOSUM matrix is named for the percent identity cutoff in step 2 (e.g. BLOSUM70 for 70% identity).
Randomly Distributed Gaps

if \(p_g = k \) (probability of a gap at each position in the sequence)

then \(P(g_1) = k, P(g_2) = k^2, \ldots, P(g_n) = k^n \)

[Note - the slope of the line on a log-linear plot will vary according to the frequency of gaps, but it will always be linear]
Distribution of real alignment gap lengths in a large set of X-ray structure-aligned proteins

Nowhere near linear - hence the use of affine gap penalties (there ideally would be several levels of decreasing affine penalties)
What you should know

• How a score matrix is derived
• What the scores mean probabilistically
• Why gap penalties should be affine