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A quick review

= Gene expression profiling

= Which molecular processes/functions
are involved in a certain phenotype
(e.g., disease, stress response, etc.)

* The Gene Ontology (GO) Project

= Provides shared vocabulary/annotation | e k|

= GO terms are linked in a complex
structure

= Enrichment analysis:
" Find the “most” differentially expressed genes
= |dentify functional annotations that are over-represented
= Modified Fisher's exact test




A quick review:
Modified Fisher's exact test
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Do | have a surprisingly high number of blue genes?

Null model: the 8 genes/balls are selected randomly

2 out of 8 1 out of 8 2 out of 8 5 out of 8 3 out of 8 4 out of 8 2 out of 8

So, if you have 50 balls, 10 of them are blue, and you pick 8 balls
randomly, what is the probability that k of them are blue?



A quick review:
Modified Fisher's exact test

Hypergeometric distribution

m;\ (m—m

)
()

m=50, m;=10, n=8

Q
59
o8 /50
0,00
090

P@:@:(

Probability

0123456738
\ J

k Y

A So ... do | have a surprisingly
95 @0 high number of blue genes?

Can such high numbers (4 or above)
occur by change?

What is the probability of getting mmm)> P(0, >=4)
at least 4 blue genes in the null model?



Enrichment Analysis
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Enrichment Analys
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Problems with cutoff-based analysis

After correcting for multiple hypotheses testing, no
individual gene may meet the threshold due to noise.

Alternatively, one may be left with a long list of
significant genes without any unifying biological theme.

The cutoff value is often arbitrary!

We are really examining only a _ G

A
e
handful of genes, totally i |gnor|ng ey

much of the data
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Gene Set Enrichment Analysis

= MIT, Broad Institute
= \/ 2.0 available since Jan 2007

Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wide
expression profiles

Aravind Subramanian®*, Pablo Tamayo**, Vamsi K. Mootha™*, Sayan Mukherjee®, Benjamin L. Ebert**,
Michael A. Gillette*', Amanda Paulovich?, Scott L. Pomeroy”, Todd R. Golub™*, Eric 5. Lander*4*, and Jill P. Mesirov**
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Although genomewide RNA expression analysis has become a
routine tool in biomedical research, extracting biological insight
from such information remains 8 major challenge. Here, we de
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(Subramanian et al. PNAS. 2005.)



GSEA key features

Calculates a score for the enrichment of a entire set of
genes rather than single genes!

Does not require setting a cutoff!

|dentifies the set of relevant genes as part of the
analysis!

Provides a more robust statistical framework!



Gene Set Enrichment Analysis
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Gene Set Enrichment Analysis
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What would you expect if the
hits were randomly distributed?

What would you expect if most of
the hits cluster at the top of the list?
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Genes ranked by expression correlation to Class A

Gene Set Enrichment Analysis

Enrichment score (ES) = Enrichment plot: CELL_CYCLE_KEGG
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Genes ranked by expression correlation to Class A

Enrichment score (ES)
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Gene Set Enrichment Analysis

ES=0.43

Enrichment plot: G2PATHWAY
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Gene Set Enrichment Analysis

A ES=0.86, p<0.001
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Ducray et al. Molecular Cancer 2008 7:41




GSEA Steps

1. Calculation of an enrichment score &/~
(ES) for each functional category =z I
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2. Estimation of significance level of the ES

=  An empirical permutation test

i Phenotype labels are shuffled and the ES for this Nl distbuion of
functional set is recomputed. Repeat 1000 times. /\

=  Generating a null distribution

TActual ES

3. Adjustment for multiple hypotheses testing

: Necessary if comparing multiple gene sets (i.e.,functions)

=  Computes FDR (false discovery rate)






